mk không biết đề thêm đk \(x+y\le1\) làm j
Vì x,y>0 nên theo bđt Cô-Si:
\(P=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
=>P\(\ge\) 2
=>MinP=2
Dấu "=" xảy ra \(< =>x=y\)
Vậy..........
mk không biết đề thêm đk \(x+y\le1\) làm j
Vì x,y>0 nên theo bđt Cô-Si:
\(P=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
=>P\(\ge\) 2
=>MinP=2
Dấu "=" xảy ra \(< =>x=y\)
Vậy..........
Cho x,y>0 thoả mãn x+y\(\le\)1.Tìm GTNN của
\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}\)
cho x,y >0 thoả mãn x+y+xy=1
tìm GTNN của \(\frac{1}{x+y}+\frac{1}{x}+\frac{1}{y}\)
Cho 2 số x, y > 0 thoả mãn x+y = 1.
Tìm GTNN của \(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
Cho x,y>0 thoả mãn x+y+xy=1
Tìm GTNN của \(P=\frac{1}{x+y}+\frac{1}{x}+\frac{1}{y}\)
Làm giúp mik với. chìu nay mik đi hok tùi
Cho x,y>0 thoả mãn x+y+xy=1
Tìm GTNN của \(P=\frac{1}{x+y}+\frac{1}{x}+\frac{1}{y}\)
Làm giúp mik với. chìu nay mik đi hok rùi
Cho x, y > 0 thoả mãn x + y ≥ 2.
Tìm GTNN của biểu thức P = x3 + y3 + \(\frac{1}{x^3+y^3}\)
Cho x,y dương thoả mãn
\(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\)
Tìm GTNN của A = xy
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
Cho x,y>0 thỏa mãn: x+y=2. Tìm GTNN của \(C=\frac{1}{x^2+y^2}+\frac{2}{x+y}\)