Chứng tỏ rằng với mọi \(n\in N\); với mọi \(x\in Q\)ta có:
a) ( -x )2n =x2n b) ( -x )2n+1 = -x2n+1
Chứng tỏ rằng n2+3n chia hết cho 2 với mọi n\(\in\)N
ta có \(n^2+3n=n\left(n+3\right)\)
+ Nếu n lẻ thì n+3 chẵn suy ra n(n+3) chia hết cho 2
suy ra \(n^2+3n⋮2\)
+nếu n chẵn thì n(n+3) chia hết cho2
suy ra \(n^2+3n\) chia hết cho 2
Chứng tỏ rằng :
n . ( n + 1 ) . ( n + 5 ) chia hết cho 3 với mọi n \(\in\)N
Với n=3k ta có 3k(3k+1)(3k+5) chia hết cho 3
Với n=3k+1 ta có (3k+1)(3k+2)(3k+6)=3(3k+1)(3k+2)(k+2) chia hết cho 3
Với n=3k+2 ta có (3k+2)(3k+3)(3k+7)=3(3k+2)(k+1)(3k+7) chia hết cho 3. Từ đó ta có đpcm
a,chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6) chia hết cho 2
b, chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2
chứng tỏ rằng S = \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{n^2-1}{n^2}\) không là số tự nhiên với mọi
n\(\in\) N, n>2
\(S=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{n^2}\right)\\ S=\left(1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)\\ S=n-1-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)< n-1\)
Lại có \(\dfrac{1}{4}+\dfrac{1}{9}+..+\dfrac{1}{n^2}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)
\(\Rightarrow S>n-1-1=n-2\\ \Rightarrow n-2< S< n-1\\ \Rightarrow S\notin N\)
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6)chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì
n.(n+5)chia hết cho 2
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
1 + 1 =
em can gap!!!
Nhanh e k cho
Câu 1 Chứng tỏ rằng ( n + 20102011 ) . ( n + 2011 ) chia hết cho 2 với mọi n \(\in\)N
\(A=\left(n+2010^{2011}\right)\left(n+2011\right)\)
=> \(A=\left(n+2010-2010+2010^{2011}\right)\left(n+2011\right)\)
=> \(A=\left[\left(n+2010\right)-\left(2010-2010^{2011}\right)\right]\left(n+2011\right)\)
=> \(A=\left(n+2010\right)\left(n+2011\right)-\left(2010-2010^{2011}\right)\left(n+2011\right)\)
Vì n là số tự nhiên nên (n+2010) và (n+2011) là 2 số tự nhiên => (n+2010)(n+2011) chia hết cho 2
( vì tích 2 số tự nhiên liên tiếp luôn chia hết cho 2)
Mặt khác dễ thấy 2010-2010^11 có chữ số tận cùng là 0 nên chia hết cho 2
=> \(A=\left(n+2010\right)\left(n+2011\right)-\left(2010-2010^{2011}\right)\left(n+2011\right)⋮2\) ( Với mọi n \(\in\)N )
Chứng tỏ rằng với mọi n \(\in\)N thì 60n + 45 chia hết cho 15 . Không chia hết cho 30
Ta có:
\(60n+45\)
\(=15\left(4n+3\right)⋮15\)
Mà \(4n+3\)không chia hết cho 2
\(\Rightarrow15\left(4n+3\right)\)không chia hết cho 30
Ta có: \(60n+45=15(4n+3) \vdots 15\)
Ta lại có vì \(60n\vdots 30\) mà \(45 \not\vdots30 \Rightarrow 60n+45 \not\vdots 30\)
Chứng tỏ rằng \(\frac{3n+7}{2n+3}\)tối giản với mọi \(n\in N\)
Gọi ƯCLN(3n + 7 , 2n + 3) = d
=> \(\hept{\begin{cases}3n+7⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2.\left(3n+7\right)⋮d\\3.\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+14⋮d\\6n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+14\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow5⋮d\)
\(\Rightarrow d\inƯ\left(5\right)\)
\(\Rightarrow d\in\left\{1;5\right\}\)
Nếu d = 5
Mà \(2n+3\)tận cùng là số lẻ (1)
=> 2n + 3 \(⋮\)5 (2)
Từ (1) và (2) => 2n + 3 = ....5 \(⋮\)5 (3)
mà 3n + 7 tận cùng là chẵn hoặc lẻ
=> 3n + 7 = ...5 \(⋮\)5 (4)
Từ (3) và (4)
=> \(\frac{3n+7}{2n+3}\)là phân số chưa tối giản
VD : nếu n = 6
=> \(\frac{3n+7}{2n+3}=\frac{3.6+7}{2.6+3}=\frac{25}{15}=\frac{5}{3}\)
Điều này không thể chứng minh
Bài giải
Gọi d = ƯCLN ( 3n + 7 , 2n + 3 )
\(\Rightarrow\text{ }3n+7\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }2\left(3n+7\right)\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }6n+14\text{ }⋮\text{ }d\)
\(2n +3\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }3\left(2n+3\right)\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }6n+9\text{ }⋮\text{ }d\)
\(\Rightarrow\text{ }6n +14-\left(6n+9\right)\text{ }⋮\text{ }d\)
\(6n+14-6n-9\text{ }⋮\text{ }d\)
\(\Rightarrow\text{ }5\text{ }⋮\text{ }d\)
\(\Rightarrow\text{ }d\in\left\{1\text{ ; }5\right\}\)
Ta xét hai trường hợp :
TH1 : n lẻ => 3n + 7 chẵn
TH2 : n chẵn => 2n + 3 lẻ
=> Nếu \(d=5\) thì :
3n + 7 = 0 => n = \(-\frac{7}{3}\notin N\)
2n + 3 = 5 => n = \(1\)
Vậy \(d=1\)
\(\Rightarrow\text{ ĐPCM}\)
Xin lỗi quên mất ! Đến đoạn \(d\in\left\{1\text{ ; }5\right\}\) thì không cần lí luận gì nữa !
Viết tiếp luôn như thế này nha :
\(\Rightarrow\text{ }\) \(\frac{3n+7}{2n+3}\) có thể rút gọn để đem về dưới dạng \(\frac{5}{1}\)
\(\Rightarrow\text{ không thể chứng minh được như thế !}\)
1. Chứng tỏ rằng với mọi số tự nhiên n thì n2+n+1 không chia hết cho 5
2. Chứng tỏ rằng số a= 911 +1 chia hết cho cả 2 và 5
3. Chứng tỏ rằng tích n(n + 3) là số chẵn vói mọi số tự nhiên n
xa xa, các bạn sẽ thấy lũy tre như bức tuờng thành kiên cố đang bảo vệ bao quanh thôn xóm mìnhcây tre nhỏ nhắn với thân dài thẳng, được chia thành những đốt nhỏ đều nhau. Thân cây thường có màu xanh thẫm, các đốt thì có màu hơi xanh đậm hơi vàng. Cây tre không đứng riêng lẻ với nhau, mà thường tạo thành từng lũy với cây này tựa cây kia, dựa vào nhau cùng vươn lên bất chấp nắng mưa để đón lấy ánh sớm bình minh. Các nhánh tre thường không mọc trên cao mà mọc ngay gần dưới đất, chúng có rất nhiều gai gồ ghề và thường rất nhỏ. Còn lá tre thì mỏng, nhọn, to chỉ bằng nửa lá xoài mà thôi, tuy lá tre trông mảnh khảnh nhưng rất dẻo dai. Họ nhà tre có đến vài chục loại khác nhau, nhưng cùng một điểm tương đồng, đó là cùng có mầm non măng mọc thẳng. Và tre cũng có hoa đó các bạn, nhưng phải hơn 100 năm nó mới ra hoa một lần. Hoa tre mọc thành từng chùm có màu vàng nhạt. Mùi thơm của hoa tre cũng rất đặc biệt đó ạ! Cây tre có nhiều loại, mỗi loại lại mang đến cho chúng ta một công dụng riêng. Có tre to để đan lát, có tre để làm hàng thủ công. Tre còn có thể được sử dụng để làm nhà cửa, lều quán. Tre gai lại là người canh gác giúp cho cho luỹ làng ta trở nên kiên cố..Không chỉ trở thành những vật dụng đồng hành cùng người nông dân trong cuộc sống thường ngày, cuộc sống lao động, cây tre còn có vai trò rất quan trọng trong thời kháng chiến. Ở đó, “tre giữ làng, giữ nước, giữ mái nhà tranh, giữ đồng lúa chín” (Thép Mới). Trong lúc mà dân ta chưa có vũ khí hiện đại, vu khí đều sử dụng phụ thuộc cả vào thiên nhiên. Tre với tính chất dẻo dai mà cứng rắn đã trở thành một vũ khí vô cùng lợi hại của dân ta. Chúng ta ắt hẳn vẫn còn nhớ tới truyền thuyết Thánh Gióng, bẻ tre bên đường, đánh cho quân xâm lược không còn manh giáp. Hay sự kiện Ngô Quyền dùng cọc tre và lợi dụng thủy triều đánh tan quân Nam Hán trên song Bạch Đằng vào năm 938. Đó là minh chứng rất cụ thể cho vai trò to lớn của cây tre trong những trận chiến khốc liệt dành độc lập dân tộc. Có tầm quan trọng như vậy, từ lâu cây tre đã đi vào tiềm thức của người dân Việt với rất nhiều biểu tượng. Tre luôn mọc thành lũy, thành hàng chứ không bao giờ mọc một mình, đó là tinh thần đoàn kết, đồng lòng. Tre mọc thẳng, mọc cao, không bao giờ mọc nghiêng, cùng sự dẻo dai dễ sống của cây là biểu hiện rõ nhất cho sự kiên cường, bất khuất. Đó đều là những phẩm chất đáng quý của con người Việt Nam, dân tộc Việt Nam, nên mới nói, nhắc đến cây tre là nhắc đến con người Việt Nam. Tre thật đẹp, thật có ích. Tre là biểu tượng không thể phai đổi, không thể mất đi, tre già măng mọc, sẽ còn mãi đến mai sau. Dù là chiến tranh đã lùi xa, cuộc sống trở nên hiện đại hơn nhưng cây tre vẫn mãi giữ một vị trí quan trọng trong tâm hồn người Việt.
Chứng tỏ rằng M=(62n+19n-2n+1)\(⋮\)17 với mọi n \(\in\) N*
6^2n + 19^n - 2^n+1 = 6^2n + 19^n - 2.2^n = 36^n - 2^n + 19^n -2^n = (36-2) + (19-2) = 34 + 17
Vì 34 và 17 đều chia hết cho 17. Suy ra 34 + 17 chia hết cho 17. Suy ra M chia hết cho 17