Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Đình Nguyên
Xem chi tiết
Vũ Đình Nguyên
Xem chi tiết
Mr Lazy
8 tháng 8 2016 lúc 16:53

B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)

TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)

\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)

\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)

\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)

Xem đây là một phương trình bậc hai ẩn a, tham số b.

Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)

\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)

Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)

(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)

TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là 

\(-\frac{4}{3}\le a,b,c\le0\)

Kết hợp 2 trường hợp lại, ta có đpcm.

Vũ Thị Như Quỳnh
8 tháng 10 2016 lúc 20:29

dễ quá 

dễ quá

mình biêt s

làm đó

Nguyễn Đức Duy
Xem chi tiết
Anime
Xem chi tiết
Akai Haruma
25 tháng 5 2023 lúc 23:24

Lời giải:

Áp dụng BĐT Cauchy-Schwarz và AM-GM:

$M=\frac{b^2+c^2}{a^2}+a^2(\frac{1}{b^2}+\frac{1}{c^2})$

$\geq \frac{b^2+c^2}{a^2}+a^2.\frac{4}{b^2+c^2}$

$=(\frac{b^2+c^2}{a^2}+\frac{a^2}{b^2+c^2})+\frac{3a^2}{b^2+c^2}$

$\geq \sqrt{\frac{b^2+c^2}{a^2}.\frac{a^2}{b^2+c^2}}+\frac{3(b^2+c^2)}{b^2+c^2}$

$=2+3=5$

Vậy $M_{\min}=5$ 

/happdanh Danhkisayhello
Xem chi tiết
Nguyễn Tuấn Anh
Xem chi tiết
Trí Tiên亗
6 tháng 8 2020 lúc 10:06

Áp dụng bất đẳng thức Cosi, ta có:

\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)Do đó, để chứng minh bất đẳng thức đã cho, ta chỉ cần chứng minh rằng:

\(\frac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\sqrt{3}\)

Áp dụng bất đẳng thức Côsi lần thứ hai ta nhận được:

\(VT=\frac{\sqrt{a}\sqrt{a\left(1+b+c\right)}+\sqrt{b}\sqrt{b\left(1+c+a\right)}+\sqrt{c}\sqrt{c\left(1+a+b\right)}}{a+b+c}\)

\(\le\frac{\sqrt{\left(a+b+c\right)\left[a\left(1+b+c\right)+b\left(1+c+a\right)+c\left(1+a+b\right)\right]}}{a+b+c}\)

\(=\sqrt{1+\frac{2\left(ab+bc+ca\right)}{a+b+c}}\)

\(\le\sqrt{1+\frac{2\left(a+b+c\right)}{3}}\)

\(\le\sqrt{1+\frac{2\sqrt{3\left(a^2+b^2+c^2\right)}}{3}}=\sqrt{3}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

Khách vãng lai đã xóa
Trí Tiên亗
6 tháng 8 2020 lúc 10:07

sửa đề thành \(a^2+b^2+c^2=3\) nhé

Khách vãng lai đã xóa
/happdanh Danhkisayhello
Xem chi tiết
Đặng Gia Ân
Xem chi tiết
Phạm Ngọc Bích
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Khách vãng lai đã xóa
Vũ Quỳnh Trang
Xem chi tiết
Phước Nguyễn
23 tháng 7 2016 lúc 8:39

Không khó nha,!

HeroZombie
22 tháng 7 2016 lúc 18:57

\(\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2};\frac{z^3}{x\left(y+2z\right)}\ge\frac{x+y+z}{3}\)

l҉o҉n҉g҉ d҉z҉
2 tháng 4 2021 lúc 21:33

\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\)

\(=\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\)( do abc = 1 )

\(=\frac{bc}{ab+ac}+\frac{ac}{bc+ab}+\frac{ab}{ac+bc}\)(1)

Đặt \(\hept{\begin{cases}ab=x\\bc=y\\ac=z\end{cases}\left(x,y,z>0\right)}\)(1) trở thành \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\)

và ta cần chứng minh \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)

Tuy nhiên đây là bất đẳng thức Nesbitt quen thuộc :D

nên ta có điều phải chứng minh

Đẳng thức xảy ra <=> x=y=z => a=b=c=1

Khách vãng lai đã xóa