cho pt:2\(x^2\)-5x+m+1=0
Tìm m để pt có 2 nghiệm x1;x2 tm:2x1+3x2=4
cho pt x^2-5x+m-2=0
Tìm m để pt có nghiệm thỏa mãn
a,x1=2x2
b,x1^+x2^2=6
c,x1^2-x2^2=5
d,|x1-x2|=14
a: \(\Delta=\left(-5\right)^2-4\cdot1\cdot\left(m-2\right)=25-4m+8=-4m+33\)
Để phương trình có nghiệm thì -4m+33>=0
=>-4m>=-33
hay m<=33/4
Theo đề, ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5}{3}\\x_1=\dfrac{10}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=m-2\)
=>m-2=50/9
hay m=68/9
b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow5^2-2\left(m-2\right)=6\)
=>25-2(m-2)=6
=>2(m-2)=19
=>m-2=19/2
hay m=23/2
d: \(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=14\)
\(\Leftrightarrow25-4\left(m-2\right)=196\)
=>4(m-2)=-171
=>m-1=-171/4
hay m=-163/4
cho pt: x2-2(m-1)x+m2+2=0
Tìm giá trị của m để pt có 2 nghiệm x1;x2 TM x12 + x22 =10
PT có nghiệm `<=> \Delta' >=0`
`<=> (m-1)^2-(m^2+2)>=0`
`<=>-2m-1>=0`
`<=>m <= -1/2`
Viet: `x_1+x_2=2m-2`
`x_1x_2=m^2+2`
`x_1^2+x_2^2=10`
`<=>(x_1+x_2)^2-2x_1x_2=10`
`<=>(2m-2)^2-2(m^2+2)=10`
`<=> 2m^2-8m=10`
`<=>` \(\left[{}\begin{matrix}m=-1\left(TM\right)\\m=5\left(L\right)\end{matrix}\right.\)
Vậy `m=-1`.
cho phương trình ẩn x2 -5x+m-2=0
Tìm m để pt có 2 nghiệm dương phân biệt x1 x2 thõa mãn hệ thức
2(\(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\))=3
Lời giải:
Để pt có 2 nghiệm dương phân biệt thì:
\(\left\{\begin{matrix} \Delta=25-4(m-2)>0\\ S=5>0\\ P=m-2>0\end{matrix}\right.\Leftrightarrow 2< m< \frac{33}{4}\)
Khi đó:
\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\Leftrightarrow 4(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1x_2}})=9\)
\(\Leftrightarrow 4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)
\(\Leftrightarrow 4(5t^2+2t)=9\) với $t=\frac{1}{\sqrt{m-2}}$
$\Rightarrow t=\frac{1}{2}$
$\Leftrightarrow m=6$ (thỏa)
cho pt x2-x+m-2=0
tìm m để phương trình có nghiệm x1 x2 sao cho gttđ của x1 + gttđ của x2 =2
cho pt 2x^2-(m+1)x+m-1=0
Tìm m để pt có 2 ngh phân biệt x1, x2 thỏa x1-x2=x1.x2
Lời giải:
Để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:
$\Delta=(m+1)^2+8(m-1)>0$
$\Leftrightarrow m^2+10m-7>0(*)$
Áp dụng định lý Viet:
$x_1+x_2=\frac{m+1}{2}$
$x_1x_2=\frac{m-1}{2}$
Khi đó:
$x_1-x_2=x_1x_2$
$\Rightarrow (x_1-x_2)^2=(x_1x_2)^2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1x_2)^2$
$\Leftrightarrow (\frac{m+1}{2})^2-2(m-1)=(\frac{m-1}{2})^2$
$\Leftrightarrow m=2$ (thỏa mãn $(*)$)
Vậy......
bài 11:
Cho pt x2-5x+m+2=0
Tìm m để pt có 2 nghiệm pb thỏa mãn x12-x22=10
Bạn có thể tham khảo bài này. Hướng giải tương tự.
https://hoc24.vn/cau-hoi/cho-phuong-trinh-x2-4xm0m-la-tham-soa-tinh-cac-gia-tri-cua-m-de-phuong-trinh-co-cac-nghiem-x1x2-thoa-man-x1-x2-va-x22-x1218.6292592319064
Cho pt: x2 - 2(m - 1)x + m + 1 = 0
Tìm m để phương trình có 2 nghiệm x1, x2 thoả mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m+1\right)\)
\(=\left(-2m+2\right)^2-4\left(m+1\right)\)
\(=4m^2-8m+4-4m-4\)
\(=4m^2-12m\)
Để phương trình có nghiệm thì \(\text{Δ}\ge0\)
\(\Leftrightarrow4m^2-12m\ge0\)
\(\Leftrightarrow4m\left(m-3\right)\ge0\)
\(\Leftrightarrow m\left(m-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\)
Khi \(\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\), Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=m+1\end{matrix}\right.\)
Ta có: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
\(\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1\cdot x_2}=4\)
\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\)
\(\Leftrightarrow\dfrac{\left(2m-2\right)^2-2\cdot\left(m+1\right)}{m+1}=4\)
\(\Leftrightarrow4m^2-8m+4-2m-2=4\left(m+1\right)\)
\(\Leftrightarrow4m^2-10m+2-4m-4=0\)
\(\Leftrightarrow4m^2-14m-2=0\)
Đến đây bạn tự làm nhé, chỉ cần tìm m và đối chiều với điều kiện thôi
Pt có 2 nghiệm
\(\to \Delta=[-2(m-1)]^2-4.1.(m+1)=4m^2-8m+4-4m-4=4m^2-12m\ge 0\)
\(\leftrightarrow m^2-3m\ge 0\)
\(\leftrightarrow m(m-3)\ge 0\)
\(\leftrightarrow \begin{cases}m\ge 0\\m-3\ge 0\end{cases}\quad or\quad \begin{cases}m\le 0\\m-3\le 0\end{cases}\)
\(\leftrightarrow m\ge 3\quad or\quad m\le 0\)
Theo Viét
\(\begin{cases}x_1+x_2=2(m-1)\\x_1x_2=m+1\end{cases}\)
\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
\(\leftrightarrow \dfrac{x_1^2+x_2^2}{x_1x_2}=4\)
\(\leftrightarrow \dfrac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=4\)
\(\leftrightarrow \dfrac{[2(m-1)]^2-2.(m+1)}{m+1}=4\)
\(\leftrightarrow 4m^2-8m+4-2m-2=4(m+1)\)
\(\leftrightarrow 4m^2-10m+2-4m-4=0\)
\(\leftrightarrow 4m^2-14m-2=0\)
\(\leftrightarrow 2m^2-7m-1=0 (*)\)
\(\Delta_{*}=(-7)^2-4.2.(-1)=49+8=57>0\)
\(\to\) Pt (*) có 2 nghiệm phân biệt
\(m_1=\dfrac{7+\sqrt{57}}{2}(TM)\)
\(m_2=\dfrac{7-\sqrt{57}}{2}(TM)\)
Vậy \(m=\dfrac{7\pm \sqrt{57}}{2}\) thỏa mãn hệ thức
Cho pt x2 -2(m-1)x+m+1=0
Tìm m để pt có 2 nghiệm phân biệt
PT có 2 nghiệm phân biệt
`<=>Delta'>0`
`<=>(m-1)^2-(m+1)>0`
`<=>m^2-2m+1-m-1>0`
`<=>m^2--3m>0`
`<=>m(m-3)>0`
`<=>` $\left[ \begin{array}{l}\begin{cases}m>0\\m-3>0\\\end{cases}\\\begin{cases}m<0\\m-3<0\\\end{cases}\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\begin{cases}m>0\\m>3\\\end{cases}\\\begin{cases}m<0\\m<3\\\end{cases}\end{array} \right.$
`<=>` $\left[ \begin{array}{l}m>3\\m<0\end{array} \right.$
Vậy m>3 or m<0 thì PT có 2 nghiệm phân biệt
cho pt x2 - 5x + 3 - m = 0
tìm m để pt có nghiệm x = -3
tìm nghiệm còn lại
Thay \(x=-3\) vào pt \(x^2-5x+3-m=0\)
\(\Rightarrow\left(-3\right)^2-5\left(-3\right)+3-m=0\Rightarrow27-m=0\Rightarrow m=27\)
\(m=27\Rightarrow x^2-5x+3-27=0\Rightarrow x^2-5x-24=0\)
Giải pt \(x^2-5x-24=0\) ta có 2 nghiệm pb \(\left\{{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)
Vậy nghiệm còn lại là x = 8.