Tìm giá trị của x để biểu thức B = \(\frac{x^2-4x+2020}{x^2-2x+1}\)nhận GTNN
@ Quỳnh hentaiz :))
Bài 1: Cho biểu thức P=\(\frac{x^4-x}{x^2+x+1}-\frac{2x^2+x}{x}+\frac{2\left(x^2-1\right)}{x-1}\)
a) Rút gọn P.
b) Tìm GTNN của P.
c) Tìm các giá trị dương của x để biểu thức Q=\(\frac{2x}{P}\) nhận giá trị là số nguyên.
Cho biểu thức :
\(A=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
a,Tìm x giá trị của A được xác định. Rút gọn biểu thức A
b, Tìm giá trị nguyên của x để A nhận giá rị nguyên
Cho biểu thức A=\(\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
a) Tìm x để giá trị của A được xác định. Rút gọn biểu thức A
b) Tìm giá trị nguyên của x để A nhận giá trị nguyên
Mọi người giúp mình với ạ!! Mình đang rất cần. Chân thành cảm ơn
Cho biểu thức B=(2x+1/2x-1 + 4/1-4x^2 - 2x-1/2x+1)2x+1/x+2
a)Tìm điều kiện của x để biểu thức B được xác định
b)Rút gọn B
c)Tính giá trị của biểu thức B tại x thỏa mãn lx-1l=3
d)Tìm giá trị nguyên của x để B nhận giá trị nguyên
a: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{1}{2};-2\right\}\)
b: \(B=\dfrac{4x^2+4x+1-4-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x+2}\)
\(=\dfrac{8x-4}{2x-1}\cdot\dfrac{1}{x+2}=\dfrac{4}{x+2}\)
Cho biểu thức A=\(\left(\frac{4x}{x^2-4}+\frac{2x-4}{x+2}\right).\frac{x+2}{2x}+\frac{2}{2-x}\)
a)Rút gọn biểu thức A
b)Tính giá trị của biếu thức A với x=4
c)tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
đk:x khác 0,+-2,2
cho biểu thức A= \(\frac{2x^2+4x}{x^3-4x}+\frac{x^2-4}{x^2+2x}+\frac{2}{2-x}\) (với x \(\ne\)0; x\(\ne\)-2; x\(\ne\)2
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A khi x=4
c) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
1.Cho biểu thức C = x³/x²-4 - x/x-2 - 2/x+2
a,tìm giá trị của biến để biểu thức được xác định
b,Tìm x để C=0
c,Tìm giá trị nguyên của x để C nhận giá trị dương
2,cho P = (2+x/2-x + 4x²/x²-4 - 2-x/2+x): x²-3x/2x²-x³
a,Tìm điều kiện của x để giá trị của P được xác định
B, rút gọn P
c,Tính giá trị P với |x-5|=2
d,Tìm x để P<0
3,cho biểu thức B = [x+1/2x-2 + 3/x²-1 - x+3/2x+2]. 4x²-4/5
a,Tìm điều kiện của x để giá trị biểu thức được xác định
b,CMR khi giá trị của biểu thức không phụ thuộc vào giá trị của biến x?
4,Cho phân thức C = 3x²-x/9x²-6x+1
a, tìm điều kiện xác định phân thức
b,tính giá trị phân thức tại x=-8
c,Tìm x để giá trị của phân thức nhận giá trị dương
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
chết mk nhìn nhầm phần c bài 2 :
\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
Để P xác định
\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)
\(2+x\ne0\Rightarrow x\ne-2\)
\(x^2-4\ne0\Rightarrow x\ne0\)
\(x^2-3x\ne0\Rightarrow x\ne3\)
b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)
\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)
d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)
\(TH1:8x^2-4x^3< 0\)
\(\Rightarrow8x^2< 4x^3\)
\(\Rightarrow2< x\Rightarrow x>2\)
\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)
cho biểu thức \(A=\left(\frac{4x}{x^2-4}+\frac{2x-4}{x+2}\right).\frac{x+2}{2x}+\frac{2}{2-x}\)( với x khác 0 ; x khác - 2 ; x khác 2)
a, rút gọn biểu thức A
b, Tính giá trị của biểu thức A khi x = 4
c, TÌm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
giúp mk nha
cho mình hỏi với ạ
1.Tìm x,y để giá trì M = (x-2021)^2022+(2021-y)^2020 bằng 0
2.Chứng minh biểu thức A = (2x-1)^2 + 4x^4y^2 + 2021 luôn nhận giá trị dường với mọi x,y
1: \(M=0\)
mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)
nên x-2021=0 và 2021-y=0
=>x=2021 và y=2021