cho tam giác ABC ,đường chéo AD,BE,CF giao nhau tại H .gọi K là giao điểm DE và CF.
C/m HFxCK=HKxCF
ho tam giác ABC, đường cao AD, BE, CF cắt nhau tại H.
Gọi K là giao điểm của DE và CF. Chứng minh: HF.CK = HK.CF
Cho tam giác ABC(AB<AC)nội tiếp đường tròn. Ba đường cao AD, BE,CF cắt nhau tại H.gọi I là tâm đường tròn ngoại tiếp tam giác AEF .M là giao điểm BE và DF. N là giao điểm CF và DE. Gọi K là tâm đường tròn ngoại tiếp DFIE. Chứng minh Ak vuông góc MN
Cho tam giác ABC có AD, BE, CF là các đường phân giác trong. Gọi giao điểm của DE và CF là M; giao điểm DF và BE là N. Chứng minh rằng AD là tia phân giác của góc MAN
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R) . Các đường cao BE và CF cắt nhau tại H.
a) C/m: AEHF và BCEF tứ giác nội tiếp
b) Gọi M và N thứ tự là giao điểm thứ hai của đường tròn (O;R) với BE và CF.C/m: MN//EF
a) sử dụng tính chất tổng 2 góc đối = 180
hoặc 2 góc cùng nhìn 1 cạnh
b) sử dụng góc nội tiếp bằng nhau ở vị trí so le hoặc đồng vị
Cho tam giác ABC có M nằm trong tam giác. Tia AM,BM,CM cắt BC,AC,AB tại D,E,F. Gọi H là giao điểm của BE và DF, K là giao điểm của CF và DE. Chứng minh AD,BK và CH đồng quy
Link hình: file:///C:/Users/THAOCAT/Pictures/Screenshots/Screenshot%20(1224).png
Áp dụng định lý Menelaus cho bộ ba điểm (K,E,D) thằng hàng của \(\Delta\)AMC, ta được: \(\frac{KM}{KC}.\frac{EC}{EA}.\frac{DA}{DM}=1\Rightarrow\frac{KM}{KC}=\frac{EA}{EC}.\frac{DM}{DA}\)(1)
Tương tự đối với bộ ba điểm (H,D,F) thẳng hàng trong \(\Delta\)AMB, ta được: \(\frac{HB}{HM}.\frac{DM}{DA}.\frac{FA}{FB}=1\Rightarrow\frac{HB}{HM}=\frac{FB}{FA}.\frac{DA}{DM}\)(2)
Tiếp tục áp dụng định lý Ceva cho ba đường thẳng AD, BE, CF đồng quy tại M trong \(\Delta\)ABC, ta có: \(\frac{DC}{DB}.\frac{FB}{FA}.\frac{EA}{EC}=1\Rightarrow\frac{DC}{DB}=\frac{FA}{FB}.\frac{EC}{EA}\)(3)
Từ (1), (2), (3) suy ra \(\frac{KM}{KC}.\frac{HB}{HM}.\frac{DC}{DB}=1\)
\(\Delta\)BMC có \(\frac{KM}{KC}.\frac{HB}{HM}.\frac{DC}{DB}=1\)nên ba đường thẳng MD, BK, CH đồng quy (định lý Ceva đảo)
Vậy AD, BK và CH đồng quy (đpcm)
Cho tam giác ABC, đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: tam giác ABD đồng dạng với tam giác CBF. b) Chứng minh: AH.HD=CH.HF. c) Chứng minh: tam giác BDF đồng dạng với tam giác ABC. d) Gọi K là giao điể DE và CF. Chứng minh: HF.CK=HK.CF.
a. ta có \(\hept{\begin{cases}\widehat{ADB}=\widehat{CFB}=90^0\\\widehat{ABD}=\widehat{CBF}\end{cases}\Rightarrow\Delta ABD~\Delta CBF\left(g.g\right)}\)
b.Ta có \(\hept{\begin{cases}\widehat{AFH}=\widehat{CDH}=90^0\\\widehat{AHF}=\widehat{CHD}\text{ (đối đỉnh)}\end{cases}\Rightarrow\Delta AHF~\Delta CHD\left(g.g\right)}\)\(\Rightarrow\frac{AH}{HF}=\frac{CH}{HD}\Rightarrow AH.HD=CH.HF\)
c. từ câu a ta có \(\frac{BD}{BF}=\frac{BA}{BC}\Rightarrow\Delta BDF~\Delta BAC\left(c.g.c\right)\)
đúng 6 sai 1
a. ta có
b.Ta có
c. từ câu a ta có
cho tam giác ABC đường cao AD, BE, CF cắt nhau tại H
a) CM tam giác ABD đồng dạng tam giác CBF
b) CM AH*HD=CH*HF
c)CM tam giác BDF đồng dạng tam giác ABC
d) Gọi K là giao điểm của DE và CF. CM HF*CK=HK*CF
Cho tam giác ABC có AB<AC nội tiếp (O), các đường cao AD,BE,CF cắt nhau tại H. CH cắt (O) tại giao điểm thứ 2 là P, PD cắt (O) tại giao điểm thứ 2 là Q, Co cắt DE tại K, AQ cắt DE tại I, đường tròn ngoại tiếp tam giác FDK cắt AD tại Ma, Chứng minh tam giác FHD đồng dạng với tam giác ADEb, Chứng minh AQ chia đôi DEc, Chứng minh MI song song AC
Cho tam giác ABC có AB<AC nội tiếp (O), các đường cao AD,BE,CF cắt nhau tại H. CH cắt (O) tại giao điểm thứ 2 là P, PD cắt (O) tại giao điểm thứ 2 là Q, Co cắt DE tại K, AQ cắt DE tại I, đường tròn ngoại tiếp tam giác FDK cắt AD tại Ma, Chứng minh tam giác FHD đồng dạng với tam giác ADEb, Chứng minh AQ chia đôi DEc, Chứng minh MI song song AC