(1^2/1.3)+(2^2/3.5)+....+(n^2/(2n-1)(2n+1))=(n(n+1))/((2n-1)(2n+1))
Cho P =2 / 1.3+ 2/3.5 +...+ 2/ (2n+1).(2n+3). CMR P<1, n thuoc N*
\(P=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}+\frac{1}{2n+3}\)
\(P=1-\frac{1}{2n+3}\)\(
Tình B= 1.3/3.5+2.4/5.7+3.5/7.9+....+(n-1)(n+1)/(2n-1)/2n+1 plzzzz
CMR : vs mọi n thuc N TA CÓ :
1/1.3 + 1/3.5 + 1/5.7 + ... + 1/(2n+1)(2n+3) = n+1/2n+3
CM: \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\) = \(\dfrac{n+1}{2n+1}\)
Ta có:
VT = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\)+....+\(\dfrac{2}{\left(2n+1\right)\left(2n+3\right)}\))
VT = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+....+ \(\dfrac{1}{2n+1}\) - \(\dfrac{1}{2n+3}\))
VT = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{2n+3}\) )
VT = \(\dfrac{1}{2}\) \(\times\)( \(\dfrac{2n+3}{2n+3}\) - \(\dfrac{1}{2n+3}\))
VT = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2n+2}{2n+3}\)
VT = \(\dfrac{1}{2}\) \(\times\)\(\dfrac{2\times\left(n+1\right)}{2n+3}\)
VT = \(\dfrac{n+1}{2n+3}\) = VP (đpcm)
Chứng minh BĐT sau
a)\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}< \dfrac{1}{2}\)
b)
a)
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}\)
P/s: Cj chỉ biết làm ý a thôi nhé! Có j ko hiểu cmt nhé!
cho \(I=\frac{1.3+2}{4}.\frac{3.5+2}{16}.....\frac{\left(2^{2n}-1\right)\left(2^{2n}+1\right)+2}{2^{2n}}\)với n thuộc N. chứng minh \(I< \frac{4}{3}\)
Chứng minh rằng với mọi n ∈ N✱ , ta có :
1/1.3+1/3.5+1/5.7+...+1/(2n-1)(2n+1)=n/2n+1
17/lim\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\right)\)
18/lim\(\frac{1+a+a^2+...+a^n}{1+b+b^2+...+b^n}\left(\left|a\right|< 1;\left|b\right|< 1\right)\)
19/lim\(\frac{1-2+3-4+...+\left(2n-1\right)-2n}{2n+1}\)
Tính S = 1.3/3.5 + 2.4/5.7 + 3.5/7.9 + ... + ( n-1)( n+1) / (2n-1)(2n+1) + ... + 1002.1004/2005.2007
\(S=\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}+...+\frac{1002.1004}{2005.2007}\)
\(\Rightarrow S=\frac{\left(2-1\right)\left(2+1\right)}{\left(2.2-1\right)\left(2.2+1\right)}+\frac{\left(3-1\right)\left(3+1\right)}{\left(3.2-1\right)\left(3.2+1\right)}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}\)
\(+..+\frac{\left(1003-1\right)\left(1003+1\right)}{\left(1003.2-1\right)\left(1003.2+1\right)}\)
\(\Rightarrow S=\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}\right)+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{3.2-1}-\frac{1}{3.2+1}\right)+...\)
\(+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)+...+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{1003.2-1}-\frac{1}{1003.2+1}\right)\)
\(\Rightarrow S=1002.\frac{1}{4}-1002.\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}+\frac{1}{3.2-1}-...-\frac{1}{1003.2+1}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2007}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{2007}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}.\frac{668}{2007}\)
\(\Rightarrow S=\frac{501}{2}-\frac{27889}{223}\)
\(\Rightarrow S=125,4372197\)
\(\)
Cho M=\(\frac{1.3+2}{4}.\frac{3.5+2}{16}.\frac{15.17+2}{256}.\frac{255.257+2}{65536}.....\frac{\left(2^{2n}-1\right)\left(2^{2n}+1\right)+2}{2^{2n}}\)
(n thuộc N)
Chứng minh M<\(\frac{4}{3}\)