phân tích thành nhân tử x^3m+1+x^3n+2+1
Phân tích đa thức thành nhân tử x7+x2+1 (đa thức dạng x3m+1+x3n+2+1 có chứa nhân tử dạng x2 +x+1)
\(x^{3n+1}+x^{3m+2}+1\).Phân tích đa thức trên thành nhân tử
cách phân tích nhân tử tổng quát cùa da thức x3m+1 + x3n+2 +1
(ví dụ x4+x2+10)
cách phân tích nhân tử tổng quát cùa da thức x3m+1 + x3n+2 +1
(ví dụ x4+x2+10)
Phân tích đa thức sau thành nhân tử 5m²-5mn+3m-3n
5m^2 - 5mn + 3m - 3n
= 5m . ( m - n ) + 3 . ( m - n )
= ( m - n ) . ( 5m + 3 )
5m^2 - 5mn + 3m - 3n
= 5m(m-n) + 3(m-n)
= (m-n)(5m+3)
Phân tích đa thức thành nhân tử :
a) (a+b)^2n + (a+b)^2n-1
b) (a-2b)^3n + (a-2b) ^3n+1
c) (a+b-c)x^2 - (c-a-b)x
a) \(\left(a+b\right)^{2n}+\left(a+b\right)^{2n-1}=\left(a+b\right)^{2n-1}\cdot\left(a+b\right)+\left(a+b\right)^{2n-1}=.\)
\(=\left(a+b\right)^{2n-1}\cdot\left(a+b+1\right).\)
b) \(3\cdot\left(x+1\right)^n-6\cdot\left(x+1\right)^{n+1}=3\left(x+1\right)^n\cdot\left(1-2\cdot\left(x+1\right)\right)=\)
\(=3\left(x+1\right)^n\cdot\left(1-2x-2\right)=-3\left(x+1\right)^n\cdot\left(2x+1\right)\)
c) \(\left(a+b-c\right)x^2-\left(c-a-b\right)x=x\left[\left(a+b-c\right)x+\left(a+b-c\right)\right]\)
\(=\left(a+b-c\right)x\left(x+1\right)\)
bài 1: Phân tích đa thức thành nhân tử : x^2-6x+8
bài 2: Phân tích đa thức thành nhân tử : x^8+x^7+1
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
1) Phân tích đa thức thành nhân tử: x5+x+1
2) Tìm \(n\in Z\) để \(\left(2n^2-3n+1\right)⋮\left(2n+1\right)\)
Bài 1:
\(x^5+x+1\)
\(=x^5-x^4+x^2+x^4-x^3+x+x^3-x^2+1\)
\(=x^2\left(x^3-x^2+1\right)+x\left(x^3-x^2+1\right)+\left(x^3-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
Bài 2:
\(\frac{2n^2-3n+1}{2n+1}=\frac{n\left(2n+1\right)-4n+1}{2n+1}=\frac{n\left(2n+1\right)}{2n+1}-\frac{4n+1}{2n+1}=n-\frac{4n+1}{2n+1}\in Z\)
\(\Rightarrow4n+1⋮2n+1\)
\(\Rightarrow\frac{4n+1}{2n+1}=\frac{2\left(2n+1\right)-1}{2n+1}=\frac{2\left(2n+1\right)}{2n+1}-\frac{1}{2n+1}=2-\frac{1}{2n+1}\in Z\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow2n\in\left\{0;-2\right\}\)
\(\Rightarrow n\in\left\{0;-1\right\}\)