\(\dfrac{5x^2+3y^2}{10x^2-3y^2}\) biết \(\dfrac{x}{3}=\dfrac{y}{5}\)
Tính giá trị biểu thức
\(A=\dfrac{5x^2+3y^2}{10x^2-3y^2}với\dfrac{x}{3}=\dfrac{y}{5}\)
Cho C(x,y)=\(\dfrac{5x^2+3y^2}{10x^2-3y^2}\)
Tính C biết \(\dfrac{x}{3}=\dfrac{y}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow x=3k;y=5k\)
Thay x=3k;y=5k vào biểu thức C(x;y) ta có:
\(C\left(x;y\right)=\dfrac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}\)
\(=\dfrac{5.9.k^2+3.25.k^2}{10.9.k^2-3.25.k^2}\)
\(=\dfrac{45k^2+75k^2}{90k^2-75k^2}\)
\(=\dfrac{120k^2}{15k^2}=\dfrac{120}{15}=8\)
Vậy giá trị của biểu thức C(x;y) là 8
Chúc bạn học học tốt nha!!!
Cho \(\dfrac{x}{3}=\dfrac{y}{5}\). Tính giá trị của biểu thức: C= \(\dfrac{5x^2+3y^2}{10x^2-3y^2}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)
\(C=\dfrac{5x^2+3y^2}{10x^2-3y^2}=\dfrac{45k^2+75k^2}{90k^2-75k^2}=\dfrac{120k^2}{15k^2}=8\)
Vậy C = 8
Đặt:
\(\dfrac{x}{3}=\dfrac{y}{5}=k\) \(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)
Thay vào \(C\) ta có:
\(C=\dfrac{5x^2+3y^2}{10x^2-3y^2}=\dfrac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}=\dfrac{45k^2+75k^2}{90k^2-75k^2}=\dfrac{120k^2}{15k^2}=\dfrac{120}{15}=8\)
cho\(\dfrac{x}{3}\)=\(\dfrac{y}{5}\). tính:
A=\(\dfrac{5x^2+3y^2}{10x^2-3y^2}\)
Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\) (k \(\ne\) 0)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)
Mà A = \(\dfrac{5x^2+3y^2}{10x^2-3y^2}\) (bài cho)
\(\Rightarrow\) A = \(\dfrac{5\left(3k\right)^2+3\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}\)
\(\Leftrightarrow\) A = \(\dfrac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}\)
\(\Leftrightarrow\) A = \(\dfrac{45k^2+75k^2}{90k^2-75k^2}\)
\(\Leftrightarrow\) A = \(\dfrac{120k^2}{15k^2}\)
\(\Leftrightarrow\) A = \(\dfrac{120}{15}\)
\(\Leftrightarrow\) A = 8
Vậy A = 8
1) Theo tinh chat phan thuc thi 2 phan thuc nao sau day bang nhau
A. \(\dfrac{5x^3y^4}{6xy^2}\) va \(\dfrac{10x^4y^2}{12x^2}\)
B. \(\dfrac{5x^3y^4}{6xy^2}\) va \(\dfrac{10x^3y^2}{12x^2}\)
C. \(\dfrac{5x^3y^4}{6xy^2}\) va \(\dfrac{10x^3y^2}{12x}\)
D. \(\dfrac{5x^3y^4}{6xy^2}\) va \(\dfrac{10x^3y^2}{12x^2y}\)
a) A = \(\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)
b) B = \(\dfrac{5x^2+3y^2}{10x^2-3y^2}\) biết \(\dfrac{x}{3}=\dfrac{y}{5}\)
Đặt \(S=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1008}\right)\)
\(=\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\)
Nên:
\(A=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)\(=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\)\(\Rightarrow A=1\)
Vậy A = 1
Chúc bạn học tốt!!
Cho biểu thức: \(P=\dfrac{5x^2+3y^2}{10x^2-3y^2}\). Tính giá trị biểu thức P với \(\dfrac{x}{y}=\dfrac{3}{5}\)
Từ \(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)
Khi đó \(P=\dfrac{5x^2+3y^2}{10x^2-3y^2}=\dfrac{5\cdot\left(3k\right)^2+3\cdot\left(5k\right)^2}{10\cdot\left(3k\right)^2-3\cdot\left(5k\right)^2}\)
\(=\dfrac{5\cdot9k^2+3\cdot25k^2}{10\cdot9k^2-3\cdot25k^2}=\dfrac{45k^2+75k^2}{90k^2-75k^2}\)
\(=\dfrac{120k^2}{15k^2}=\dfrac{120}{15}=8\)
Ta có:
x/3=y/5
=> x=3/5y
Thay x vào P ta được P
\(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\) \(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)
Ta có:
\(P=\dfrac{5x^2+3y^2}{10x^2-3y^2}=\dfrac{5.\left(3k\right)^2+3.\left(5k\right)^2}{10.\left(3k\right)^2-3.\left(5k\right)^2}\)
\(=\dfrac{45k^2+75k^2}{90k^2-75k^2}=\dfrac{15k^2\left(3+5\right)}{15k^2\left(6-5\right)}=\dfrac{3+5}{6-5}=8\)
Vậy \(P=8\)
tìm x,y,z biết : \(\dfrac{3x-2y}{5}=\dfrac{5y-3z}{2}=\dfrac{2z-5x}{2}\) và 10x-3y-2z = 5
Giải:
Ta có: \(\dfrac{3x-2y}{5}=\dfrac{5y-3z}{2}=\dfrac{2z-5x}{2}\)
\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}=\dfrac{15x-10y+10y-6z+6z-15x}{25+4+6}=0\)
\(\Rightarrow\left\{{}\begin{matrix}15x-10y=0\\10y-6z=0\\6z-15x=0\end{matrix}\right.\Rightarrow15x=10y=6z\)
\(\Rightarrow\dfrac{15x}{30}=\dfrac{10y}{30}=\dfrac{6z}{30}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}=\dfrac{10x-3y-2z}{20-9-10}=\dfrac{5}{1}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=10\\y=15\\z=25\end{matrix}\right.\)
Vậy...
\(\dfrac{3x-2y}{5}=\dfrac{5y-3z}{2}=\dfrac{2z-5x}{2}\)
\(\Rightarrow\dfrac{5\left(3x-2y\right)}{25}=\dfrac{2\left(5y-3z\right)}{4}=\dfrac{3\left(2z-5x\right)}{6}\)
\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)
\(=\dfrac{15x-10y+10y-6z+6z-15x}{25+4+6}\)
\(=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\5y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{5}\\2z=5x\Rightarrow\dfrac{z}{5}=\dfrac{x}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}=\dfrac{10x-3y-2z}{20-9-10}=\dfrac{5}{1}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.2=10\\y=5.3=15\\z=5.5=25\end{matrix}\right.\)
Cho C(x,y)=\(\dfrac{5^2+3y^2}{10x^2-3y^2}\)
Tính C biết \(\dfrac{x}{3}=\dfrac{y}{5}\)
Không biết vô tình hay cố ý
sửa đề đi --> nếu cố ý thì nên bỏ đi đường làm vậy, không hay gì đâu
chốt lại cái đề
\(C=\dfrac{5^2+3y^2}{10x^2-3y^2}\)