1+2+3+....+999+1000
Cho: 1^1+2^2+3^3+...+999^999+1000^1000
Tim 3 chữ số đầu tiên của tổng trên.
A=1/1×2+1/3×4+1/4×5+...1/999×1000
B=1/501×1000+1/502×999+...+1/999×502+1/1000×501
Tính A/B
Tìm 3 chữ số đầu tiên bên trái của M biết:
M= 1^1+2^2+3^3+.....+999^999+1000^1000
Tìm 3 chữ số bên trái đầu tiên của số M, biết rằng: M=1^1+2^2+3^3+...+999^999+1000^1000
cho số: 1^1+2^2+3^3+...............+999^999+1000^1000 , hãy xác định 3 chữ số đầu tiên từ bên trái số đó
A= 1000 - (1-1/2+...+1/999+1000)/1/2+1/3+...+1/999+1000
Sorry tớ không bít viết phân số.
\(A=\dfrac{1000-\left(1+\dfrac{1}{2}+...+\dfrac{1}{999}+\dfrac{1}{1000}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{1000-1-\dfrac{1}{2}-\dfrac{1}{3}...-\dfrac{1}{999}-\dfrac{1}{1000}}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{99-\dfrac{1}{2}-\dfrac{1}{3}...-\dfrac{1}{999}-\dfrac{1}{1000}}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{999}\right)+\left(1-\dfrac{1}{1000}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}{\dfrac{1}{2}+\dfrac{2}{3}+...\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=1\)
1/2+1/3+...+1/999+1/1000 sửa thành 1/2+2/3+...+98/99+99/100
Bấm nhanh quá nên sai. Sory nhiều
tính B=(2016/1000+2016/999+2016/998+...+2016/501)/(-1/1*2+/-1/3*4+-1/5*6+...+-1/999*1000)
\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+...+\frac{2016}{501}}{\frac{-1}{1.2}+\frac{-1}{3.4}+...+\frac{-1}{999.1000}}=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{999.1000}\right)}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)
\(=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{500}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+....+\frac{1}{999}+\frac{1}{1000}\right)}=\frac{2016}{-1}=-2016\)
Vậy B = - 2016
Bạn Xyz cho mik hỏi ở phần mẫu số tại sao lại có -2*(1/2+1/4+...+1/1000) vậy? Nó ở đâu ra thế?
1-1/2+1/3-1/4+......+1/999-1/1000
500-500/501-501/502-502/503-....-999/1000
các bạn ơi giúp nhanh nha mình đang cần rất gấp
Tính tổng A=1+2+3+...+999+1000+999+...+3+2+1
Kết quả đây nhé
Đặt A=B+C
B=1+2+3+...+999+1000
C=999+998+...+3+2+1
Số số hạng của tổng B là :
(1000-1)/1+1=1000(số hạng)
Vậy tổng B là :
(1000+1)*1000/2
=1001*1000/2
=1001000/2
=500500
Vậy C=B-1000
=500500-1000
=490500
Vậy A=500500+490500
=991000
Tính A biết \(A=\frac{1000}{1}+\frac{999}{2}+\frac{998}{3}+...+\frac{2}{999}+\frac{1}{1000}\)