\(A=\dfrac{1000-\left(1+\dfrac{1}{2}+...+\dfrac{1}{999}+\dfrac{1}{1000}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{1000-1-\dfrac{1}{2}-\dfrac{1}{3}...-\dfrac{1}{999}-\dfrac{1}{1000}}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{99-\dfrac{1}{2}-\dfrac{1}{3}...-\dfrac{1}{999}-\dfrac{1}{1000}}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{999}\right)+\left(1-\dfrac{1}{1000}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{998}{999}+\dfrac{999}{1000}}{\dfrac{1}{2}+\dfrac{2}{3}+...\dfrac{998}{999}+\dfrac{999}{1000}}\)
\(A=1\)
1/2+1/3+...+1/999+1/1000 sửa thành 1/2+2/3+...+98/99+99/100
Bấm nhanh quá nên sai. Sory nhiều
Ghi đề lại;
A= 1000-(1+1/2+...+1/999+1/1000)/1/2+2/3+...+998/999+999/1000.