phân tích đa thức thành nhân tử :
\(\left(a^2+b^2+ab\right)^2-a^2b^2-b^2c^2-c^2a^2\)
phân tích đa thức thành nhân tử:\(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)
Phân tích đa thức thành nhân tử:
\(\left(a^2+b^2+ab\right)^2-a^2b^2-b^2c^2-c^2a^2\)
Phân tích đa thức thành nhân tử: \(a^4+b^4+c^4+a^2b^2+b^2c^2+c^2a^2-2abc\left(a+b+c\right)\)
Phân tích đa thức thành nhân tử
\(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)
\(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)
\(=a^2b^2\left(a-b\right)-b^2c^2\left[\left(a-b\right)+\left(c-a\right)\right]+c^2a^2\left(c-a\right)\)
\(=a^2b^2\left(a-b\right)-b^2c^2\left(a-b\right)+c^2a^2\left(c-a\right)-b^2c^2\left(c-a\right)\)
\(=\left(a-b\right)b^2\left(a-c\right)\left(a+c\right)+\left(c-a\right)c^2\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(ab^2+cb^2-c^2a-c^2b\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(ab+ac+bc\right)\)
t làm bên h rồi mà? Làm quá lâu rồi luôn ấy! Đáp án y chang bạn Kid:v
Câu hỏi của Trần Minh Hiển - Toán lớp 9 (không biết AD đã fix lỗi ko dán link h vào olm chưa, nếu chưa ib t gửi full link, nhớ kèm theo link câu hỏi này là ok.)
Phân tích đa thức thành nhân tử:
1)\(\left(a^2+b^2+ab\right)^2-a^2b^2-b^2c^2-c^2a^2\)
2)\(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c^2\)
Phân tích đa thức thành nhân tử
(a^2+b^2+ab)^2-a^2b^2-b^2c^2-c^2a^2
Phân tích đa thức thành nhân tử
a) \(a^4+b^4+c^4-2a^2b^2-2a^2c^2-2c^2b^2\)
b)\(\left(x^2+6x+8\right)\left(x^2+14x+48\right)+16\)
Hãy hoàn thành biến đổi sau vào vở để phân tích đa thức thành nhân tử:
\({a^2} + ab + 2a + 2b = \left( {{a^2} + ab} \right) + \left( {2a + 2b} \right) = ...\)
Em có thể biến đổi theo cách khác để phân tích đa thức trên thành nhân tử không?
`a^2 + ab + 2a + 2b = a(a+2) + b(a+2) = (a+b)(a+2)`
Phân tích đa thức thành nhân tử:2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4
2a2b2+2b2c2+2a2c2-a4-b4-c4
=4a2c2-(a4+b4+c4-2a2b2+2a2c2-2b2c2)
=4a2c2-(a2-b2+c2)2
=(2ac+a2-b2+c2)(2ac-a2+b2-c2)
=[(a+c)2-b2][b2-(a-c)2]
=(a+b+c)(a+c-b)(b+a-c)(b-a+c)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)