tìm X nguyên biết biểu thức 15-2x/4-x có giá trị nguyên
Cho biểu thức: A=\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
a) Rút gọn biểu thức A.
b) Tính giá trị của biểu thức A khi x = -2 và x = 4.
c) Tìm x biết A = 3.
d) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên.
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>
A=\(\dfrac{x-1}{x+2}-\dfrac{x+1}{2-x}-\dfrac{x^2-2x+4}{x^2-4}\)
a) Rút gọn biểu thức A
b) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên.
\(a,A=\dfrac{x^2-3x+2+x^2+3x+2-x^2+2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2+2x}{\left(x+2\right)\left(x-2\right)}\\ A=\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x}{x-2}\\ b,A=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\in Z\\ \Rightarrow x-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Rightarrow x\in\left\{0;1;3;4\right\}\)
Tìm các giá trị x nguyên để tại đó giá trị của mỗi biểu thức sau là một số nguyên: c. (x^2-x)/x-3 d. (3x^2-4x-15)/x+2 e. (4/x^3-4x + 1/x+2) : (2x-4-x^2)/2x^2+4x
Cho biểu thức A= x^2+6x+5/x^2+2x-15 . tìm số nguyên x để biểu thức A đạt giá trị nguyên
Tìm giá trị nguyên x để biểu thức A 6x 4 2x 1 có giá trị là số nguyên
Tìm giá trị nguyên x để biểu thức A 6x 4 2x 1 có giá trị là số nguyên
tìm x nguyên để biểu thức sau có giá trị nguyên : 2x+4/x+3
\(\frac{2x+4}{x+3}=\frac{2x+6-2}{x+3}=2-\frac{2}{x+3}\inℤ\Leftrightarrow\frac{2}{x+3}\inℤ\)
mà \(x\)là số nguyên nên \(x+3\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\)
\(\Leftrightarrow x\in\left\{-5,-4,-2,-1\right\}\).
Cho biểu thức:A=\(\dfrac{2x-1}{x+2}\)
a) Tìm số nguyên x để biểu thức A là phân số
b)Tìm các số nguyên x để biểu thức A có giá trị là 1 số nguyên
c)Tìm các số nguyên x để biểu thức A đạt giá trị lớn nhất,giá trị nhỏ nhất
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
tìm giá trị nguyên của x để biểu thức a=(6x-4)/(2x+1) có giá trị là số nguyên
Để \(A\) là số nguyên thì \(\left(6x-4\right)⋮\left(2x+1\right)\)
Ta có :
\(6x-4=6x+3-7=3\left(2x+1\right)-7\) chia hết cho \(2n+1\) \(\Rightarrow\) \(\left(-7\right)⋮\left(2x+1\right)\) \(\Rightarrow\) \(\left(2x+1\right)\inƯ\left(-7\right)\)
Mà \(Ư\left(-7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(2x+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(0\) | \(-1\) | \(3\) | \(-4\) |
Vậy \(x\in\left\{0;-1;3;-4\right\}\)
Năm mới zui zẻ nhá ^^