phan tich thanh nhan tu
(X+Y+Z)^3-X^3-Y^3-Z^3
lam giup minh vơi ai nhanh minh tich cho
phan tich da thuc thanh nhan tu (x-y).z^3 +(y-z).x^3 +(z-y).y^3
phan tich thanh nhan tu D=(x-y)^3+(y-z)^3+(z-x)^3
http://olm.vn/hoi-dap/question/102127.html
bạn tham khảo tại đây
(x+y+z)^3 - (x+y-z)^3 - (y+z-x)^3 - (z+x-y)^3
Phan tich da thuc thanh nhan tu
Goi da thuc tren la A
Thay a=b -> A= 0 -> A chua nghiem la a-b
Tuong tu b=c-> A = 0 - > A chua nghiem la b -c
Tuong tu c =a - > A = 0 -> A chua nghiem la c-a
=> A = k(a - b)(b - c)(c - a)
Vì A có bậc 3 mà (a - b)(b - c)(c - a) cũng có bậc 3 -> k là 1 số
Thay a = 3, b= 2, c= 1
=> A= -6=k.1.1..-2
=> k = 3
=> A = 3(a - b)(b - c)(c - a)
Đây gọi là phương pháp giá trị riêng bạn nha!
x^5 + x + 1
= x^5 - x^2 + (x^2 + x + 1)
= x^2(x^3 - 1) + ( x^2 + x + 1)
= x^2( x - 1)(x^2 + x + 1) + ( x^2 + x + 1)
= (x^3 - x^2 + 1)(x^ 2 + x + 1)
Phan tich da thuc thanh nhan tu :
a, -x^3 * ( 2x + 1 )^2 + 49x
b, 125x^2 + 20y - 5y^2 - 20
c, ( 1+ 2x )*(1 - 2x ) - x*(x + 2 )*( x - 2 )
d, ( x - z )*(x + z) - y*(2x - y )
e, x^2 - 3x - 54
Giup minh voi nhe cac ban. Minh se tick cho.
a: \(=x\left[49-x^2\left(2x+1\right)^2\right]\)
\(=x\left[49-\left(2x^2+x\right)^2\right]\)
\(=x\left[\left(7-2x^2-x\right)\left(7+2x^2+x\right)\right]\)
b: \(=5\left[25x^2-\left(y^2-4y+4\right)\right]\)
\(=5\left[\left(5x-y+2\right)\left(5x+y-2\right)\right]\)
c: \(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x\right)\left(1+x+x^2\right)-4x\left(x-1\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
e: =(x-9)(x+6)
phan tich da thuc thanh nhan tu x^3 +y^3-z^3+3xyz
\(x^3+y^3+z^3-3xyz\) \(=\left(x+y\right)^3-3x^2y-3xy^2+z^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
HỌC TỐT NHA!
ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)
- Hình như đề của u sai hay sao á :)))
phan tich thanh nhan tu
(x+y+z)3-x3-y3-z3
(x+y+z)3-x3-y3-z3
=(x+y)3+3(x+y)2z+3(x+y)z2+z3+x3-y3-z3
=x3+y3+3xy(x+y)+3(x+y)2z+3(x+y)z2+z3+x3-y3-z3
=3(x+y)[xy+(x+y)z+z2]
=3(x+y)(xy+xz+yz+z2)
=3(x+y)[x(y+z)+z(y+z)]
=3(x+y)(y+z)(z+x)
(x+y+z)3-x3-y3-z3
=(x+y)3+3(x+y)2z+3(x+y)z2+z3+x3-y3-z3
=x3+y3+3xy(x+y)+3(x+y)2z+3(x+y)z2+z3+x3-y3-z3
=3(x+y)[xy+(x+y)z+z2]
=3(x+y)(xy+xz+yz+z2)
=3(x+y)[x(y+z)+z(y+z)]
=3(x+y)(y+z)(z+x)
phan tich da thuc thanh nhan tu (xy+1)^2 -(x-y)^2 ai giup minh voi
\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)
\(=x^2y^2+xy-x^2y+xy^2+xy+1-x+y+x^2y+x-x^2+xy-xy^2-y+xy-y^2\)
\(=x^2y^2+2xy-x^2-y^2+1\)
Phan tich thanh nhan tu
x^3+y^3+z^3-3xyz
áp dụng hằng đẳng thức lập phương của 1 hiệu nhé chúc bạn may mắn ^_^ !
X^3+Y^3+Z^3-3xyz
phan tich da thuc thanh nhan tu