Cho a/b = c/d. Chứng minh rằng
a) a/b=7a+5c/7b+5d ( 7b # 5d # 0 )
b) 3a^6+ c^6 / (a+c)^6 / (b+d)^6
cho a/b=c/d chứng minh a/b=7a+5c/7b+5d
Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a}{b}=\frac{7a+5c}{7b+5d}\)(7b+5d khác 0)
Cho ab =cd
Chứng minh ab =7a+5c7b+5d (7b+5d khác 0)
cho a/b=c/d chứng minh a/b=7a+5c/7b+5d
Giúp mk nhá chìu nay nộp bài rùi , cảm ơn trc
Đặt a/b=c/d=k => a=bk,c=dk
Ta có: \(\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)
\(\frac{7a+5c}{7b+5d}=\frac{7bk+5dk}{7b+5d}=\frac{k\left(7b+5d\right)}{7b+5d}=k\left(2\right)\)
Từ (1) vavf (2) => a/b=7a+5c/7b+5d
cho tỉ lệ : \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). chứng minh : \(\dfrac{a}{b}\)=\(\dfrac{7a+5c}{7b+5d}\) ( b + d khác 0 )
\(\dfrac{a}{b}=\dfrac{7a}{7b}\\ \dfrac{c}{d}=\dfrac{5c}{5d}\Rightarrow\dfrac{a}{b}=\dfrac{7a}{7b}=\dfrac{5c}{5d}\Rightarrow\dfrac{7a}{7b}=\dfrac{5c}{5d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{7a}{7b}=\dfrac{5c}{5d}=\dfrac{7a+5c}{7b+5d}\)
Mà \(\dfrac{7a}{7b}=\dfrac{a}{b}\Rightarrow\dfrac{a}{b}=\dfrac{5c}{5d}=\dfrac{7a+5c}{7b+5d}\Leftrightarrow\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\)
Vậy \(\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\left(đpcm\right)\)
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow ad=bc\)
\(\Rightarrow5ad=5bc\)
\(\Rightarrow7ab+5ad=7ab+5bc\)
\(\Rightarrow a\left(7b+5d\right)=b\left(7a+5c\right)\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\rightarrowđpcm\)
cho tỷ lệ thức a/b=c/d. chứng minh:
a, 2a+5b/3a-4b=2c+5d/3c-4d
b. 3a+7b/5a-7b=3c+7d/5c-7d
d. 4a+9b/4a-7b=4c+9d/4c-7d
giúp mình với ạ
cho tỉ lệ thức : \(\frac{a}{b}\) = \(\frac{c}{d}\).
chứng minh: \(\frac{a}{b}\) = \(\frac{7a+5c}{7b+5d}\) ( b + d khác 0 )
cho a/b = c/d chứng minh
a, a/b = (7a+5c)/(7b+5d)
b, (3a6+c6) / (3b6+d6) = (a+c)6/ (b+d)6
c, (a2+c2) / (b2+d2) = (ac) / (bd)
Cho a/b=c/d chứng minh
7a-11c/7b-11d=7b+11c/7b+11d
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$
Ta có:
\(\frac{7a-11c}{7b-11d}=\frac{7bt-11dt}{7b-11d}=\frac{t(7b-11d)}{7b-11d}=t(1)\)
\(\frac{7a+11c}{7b+11d}=\frac{7bt+11dt}{7b+11d}=\frac{t(7b+11d)}{7b+11d}=t(2)\)
Từ $(1);(2)\Rightarrow \frac{7a-11c}{7b-11d}=\frac{7a+11c}{7b+11d}$
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh
d) \(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
e) \(\dfrac{2016a-2017b}{2017c+2018d}=\dfrac{2016c-2017d}{2017a+2018b}\)
g) \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7b^2+5ab}{7b^2-5ab}\)
Đặt:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\)
\(\Rightarrow\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\)
\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
\(\dfrac{2016a-2017b}{2017c+2018d}=\dfrac{2016bk-2017b}{2017dk+2018d}=\dfrac{b\left(2016k-2017\right)}{d\left(2017k+2018\right)}\)
\(\dfrac{2016c-2017d}{2017a+2018b}=\dfrac{2016dk-2017d}{2017bk+2018b}=\dfrac{d\left(2016k-2017\right)}{b\left(2017k+2018\right)}\)
\(\Rightarrow\dfrac{2016a-2017b}{2017c+2018d}=\dfrac{2016c-2017d}{2017a+2018b}\)
\(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7bk^2+5bdk^2}{7bk^2-5bdk^2}=\dfrac{k^2\left(7b+5bd\right)}{k^2\left(7b-5bd\right)}=\dfrac{7b+5bd}{7b-5bd}\)
\(\dfrac{7b^2+5ab}{7b^2-5ab}=\dfrac{7b^2+5kb^2}{7b^2-5kb^2}=\dfrac{b^2\left(7+5k\right)}{b^2\left(7-5k\right)}=\dfrac{7+5k}{7-5k}\)
Hình như sai sai