Đây là 1 dạng bài thi chuyên nha
Tính A = \(\sqrt[3]{9+5\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
Admin làm giúp nha
Ai không làm đừng nói lung tung
ai có thể giúp mình giải bài này vs đc không mình đang cần rất gấp (làm chi tiết hộ mình nhé, xin cảm ơn)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\)
b, \(\sqrt{2x-5}+\sqrt{x+2}=\sqrt{2x+1}\)
c, \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
d,\(\sqrt{x+9}=5-\sqrt{2x+4}\)
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
c, \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
d,\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
Ví Dụ 1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\)
b, \(\sqrt{x+5}=3-\sqrt{2}\)
c, \(\sqrt{3x^2}-\sqrt{12}=0\)
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
Vd1:
d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)
\(\Leftrightarrow x=6\)
Các bạn giúp mình các bài này nha.
1. Tính:
a.\(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\sqrt{\frac{4\sqrt{5}+8}{\sqrt{5}-2}}\)
b.\(\left(1+\frac{\sqrt{3}}{2}\right)\left(1-\frac{\sqrt{3}}{2}\right)-\left(1-\frac{\sqrt{3}}{2}\right)\left(1+\sqrt{1+\frac{\sqrt{3}}{2}}\right)\)
2.Tính giá trị nhỏ nhất:
\(-\sqrt{x}+x\)
3. Tính giá trị lớn nhất:
\(\sqrt{x}-x\)
Các bạn làm được bài này thì làm giúp mình nha. Mình bí quá
Tiếc quá
mình chưa học đến
bik thì giúp cho
Bài 1 : Thực hiện phép tính :
a ) \(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}\)
b ) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
c ) \(\sqrt{12}+2\sqrt{75}-3\sqrt{48}-\frac{2}{7}\sqrt{147}\)
d ) \(\sqrt{\left(3+\sqrt{5}\right)^2}-\sqrt{9-4\sqrt{5}}\)
e ) \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{\sqrt{5}+\sqrt{2}}{3}\)
f ) \(\sqrt{11-6\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
g ) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}\)
h ) \(\left(\sqrt{56}-2\sqrt{6}-\sqrt{14}\right)\sqrt{14}+\sqrt{84}\)
k ) \(\left(\frac{1}{1-\sqrt{3}}-\frac{1}{1+\sqrt{3}}\right).\left(\sqrt{3}-1\right)\)
l ) \(\sqrt{21+8\sqrt{5}}+\sqrt{21-8\sqrt{5}}\)
m ) \(\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
n ) \(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
Làm không nổi thì câu nào biết thì làm làm từ từ dần dần giúp nha các bạn
a)\(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}=3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}=-10\sqrt{2}\)
b) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}=4\sqrt{3}\)
c)\(\sqrt{12}+2\sqrt{75}-3\sqrt{48}-\frac{2}{7}\sqrt{147}=2\sqrt{3}+10\sqrt{3}-12\sqrt{3}-2\sqrt{3}=-2\sqrt{3}\)
d) \(\sqrt{\left(3+\sqrt{5}\right)^2}-\sqrt{9-4\sqrt{5}}\)
\(=\left|3+\sqrt{5}\right|-\sqrt{\left(\sqrt{5}-2\right)^2}=3+\sqrt{5}-\left|\sqrt{5}-2\right|=3+\sqrt{5}-\sqrt{5}+2=5\)
e) \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{\sqrt{5}+\sqrt{2}}{3}\)
\(=\left[\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\cdot\frac{3}{\sqrt{5}+\sqrt{2}}\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\cdot\frac{3}{\sqrt{5}+\sqrt{2}}=-3\)
Nản k lm nữa ^^
có ai biết giải bài này không giúp mình với mình đang cần gấp, xin cảm ơn
Bài 20: rút gọn
1, \(\sqrt{9-4\sqrt{5}}.\sqrt{9+4\sqrt{5}}\)
2, \(\left(2\sqrt{2}-6\right).\sqrt{11+6\sqrt{2}}\)
3, \(\sqrt{2}.\sqrt{2-\sqrt{3}}\left(\sqrt{3}+1\right)\)
4, \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}-\sqrt{2}\right).\left(2+\sqrt{3}\right)\)
5, \(\sqrt{27+10\sqrt{2}}:\dfrac{1}{\sqrt{\left(\sqrt{2}-5\right)^2}}\)
Bài 21: rút gọn
1, \(5\sqrt{\dfrac{1}{5}}\) 2, \(\dfrac{12}{5}\sqrt{\dfrac{5}{4}}\)
3, \(\dfrac{30}{5\sqrt{6}}\) 4, \(\dfrac{20}{2\sqrt{5}}\)
5, \(\dfrac{2-\sqrt{2}}{\sqrt{2}}\)
Bài 20:
a) \(\sqrt{9-4\sqrt{5}}\cdot\sqrt{9+4\sqrt{5}}=\sqrt{81-80}=1\)
b) \(\left(2\sqrt{2}-6\right)\cdot\sqrt{11+6\sqrt{2}}=2\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)\)
\(=2\left(2-9\right)=2\cdot\left(-7\right)=-14\)
c: \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=2
d) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=8+4\sqrt{3}-4\sqrt{3}-6\)
=2
ai có thể giúp mình giải bài này với đc không (giải chi tiết hộ mình nhé,xin cảm ơn)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\)
b, \(\sqrt{2x-5}+\sqrt{x+2}=\sqrt{2x+1}\)
c, \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
d, \(\sqrt{x+9}=5-\sqrt{2x+4}\)
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
VD1 :
a,\(\sqrt{2x-1}=\sqrt{2}-1\)
b,\(\sqrt{x+5}=3-\sqrt{2}\)
c,\(\sqrt{3}x^2-\sqrt{12}=0\)
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
VD2 :
a, \(\sqrt{2x+5}=\sqrt{1-x}\)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\)
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)
Bài 1: Tính
A=\(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2-\sqrt{2}}\)
Bài 2: Tìm x,y nguyên thỏa mãn:
y2 = 1 + \(\sqrt{9-x^2-4x}\)
Help me!!! Giúp với... Mình gần thi học sinh giỏi rồi.... Có ai wan tâm ko? Huhuhu...
AI BIẾT LÀM HỘ NHA ! TỚ TICK CHO
1, A= \(\frac{x+2}{x\sqrt{x-1}}+\frac{\sqrt{x+1}}{x+\sqrt{x+1}}-\frac{1}{\sqrt{x-1}}\)
2, chứng minh biểu thức sau có giá trị ko phụ thuộc vào x
A= \(\sqrt{x}+\frac{3\sqrt{2-\sqrt{3}}.6\sqrt{7+4\sqrt{3}}-x}{4\sqrt{9-4\sqrt{5}}.\sqrt{2}+\sqrt{5}+\sqrt{x}}\)
tính giá trị của f(x)=\(\left(x^4-3x+1\right)^{2016}\)tại x=9-\(\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}\)+\(\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}\)
mọi người giúp mình nha xin đừng lướt qua vội vã
Có: \(\left(\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}-\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}\right)^2\)
\(=\frac{1}{\frac{9}{4}+\sqrt{5}}+\frac{1}{\frac{9}{4}-\sqrt{5}}-2\cdot\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}\cdot\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}\)
\(=\frac{\frac{9}{4}-\sqrt{5}+\frac{9}{4}+\sqrt{5}}{\frac{1}{16}}-2\cdot\frac{1}{\frac{1}{4}}\)
\(=72-8=64\)
Mà; \(\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}< \frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}\)
\(\Rightarrow\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}-\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}< 0\)
Do đó: \(\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}-\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}=-8\)
Khi đó: \(x=9-8=1\)
Với \(x=1\), ta có:
\(f\left(1\right)=\left(1^4-3\cdot1+1\right)^{2016}=\left(-1\right)^{2016}=1\)
có ai biết giải bài này không hộ mình với mong các bạn giúp cho ( giải chi tiết hộ mình nhé, xin cảm ơn)
Bài 22: rút gọn
1, \(\sqrt{3-\sqrt{5}}\) 2, \(\sqrt{7+3\sqrt{5}}\)
3, \(\sqrt{9+\sqrt{17}}-\sqrt{9-\sqrt{17}}-\sqrt{2}\)
Bài 26: giải các phương trình sau
1, /3-2x/=\(2\sqrt{5}\) →( dấu này '/ /' là dấu giá trị tuyệt đối nha mn)
2, \(\sqrt{x^2}=12\) 3, \(\sqrt{x^2-2x+1}=7\)
4, \(\sqrt{\left(x-1\right)^2}=x+3\)
22,
1, Đặt √(3-√5) = A
=> √2A=√(6-2√5)
=> √2A=√(5-2√5+1)
=> √2A=|√5 -1|
=> A=\(\dfrac{\sqrt{5}-1}{\text{√2}}\)
=> A= \(\dfrac{\sqrt{10}-\sqrt{2}}{2}\)
2, Đặt √(7+3√5) = B
=> √2B=√(14+6√5)
=> √2B=√(9+2√45+5)
=> √2B=|3+√5|
=> B= \(\dfrac{3+\sqrt{5}}{\sqrt{2}}\)
=> B= \(\dfrac{3\sqrt{2}+\sqrt{10}}{2}\)
3,
Đặt √(9+√17) - √(9-√17) -\(\sqrt{2}\)=C
=> √2C=√(18+2√17) - √(18-2√17) -\(2\)
=> √2C=√(17+2√17+1) - √(17-2√17+1) -\(2\)
=> √2C=√17+1- √17+1 -\(2\)
=> √2C=0
=> C=0
26,
|3-2x|=2\(\sqrt{5}\)
TH1: 3-2x ≥ 0 ⇔ x≤\(\dfrac{-3}{2}\)
3-2x=2\(\sqrt{5}\)
-2x=2\(\sqrt{5}\) -3
x=\(\dfrac{3-2\sqrt{5}}{2}\) (KTMĐK)
TH2: 3-2x < 0 ⇔ x>\(\dfrac{-3}{2}\)
3-2x=-2\(\sqrt{5}\)
-2x=-2√5 -3
x=\(\dfrac{3+2\sqrt{5}}{2}\) (TMĐK)
Vậy x=\(\dfrac{3+2\sqrt{5}}{2}\)
2, \(\sqrt{x^2}\)=12 ⇔ |x|=12 ⇔ x=12, -12
3, \(\sqrt{x^2-2x+1}\)=7
⇔ |x-1|=7
TH1: x-1≥0 ⇔ x≥1
x-1=7 ⇔ x=8 (TMĐK)
TH2: x-1<0 ⇔ x<1
x-1=-7 ⇔ x=-6 (TMĐK)
Vậy x=8, -6
4, \(\sqrt{\left(x-1\right)^2}\)=x+3
⇔ |x-1|=x+3
TH1: x-1≥0 ⇔ x≥1
x-1=x+3 ⇔ 0x=4 (KTM)
TH2: x-1<0 ⇔ x<1
x-1=-x-3 ⇔ 2x=-2 ⇔x=-1 (TMĐK)
Vậy x=-1