cho n biết n = 4a + 5b . Tìm các số a,b để n chia hết cho 2 và cho 5
cho n biết n = 4a + 5b . Tìm các số a,b để n chia hết cho 2 ; n chia hết cho 5
n chia hết cho 2 và 5 => 4a ; 5b chia hết cho 2 và 5
muốn chia hết cho 2 và 5 thì 4a và 5b phải có số tận cùng là 0
4a có thể là :20;40;60;80;......
a có thể là :5;10;15;20;......
5b có thể là :10;20;30;40;50;......
b có thể là :2;4;6;8;10;........
n = 4a + 5b chia hết cho 2
Để biểu thức 4a + 5b chia hết cho 2 thì 4a phải chia hết cho 2 và 5b phải chia hết cho 2.
4a chia hết cho 2 => a có thể là: 1; 2; 3; 4; 5; 6; ... (Vì trong phép tính 4a có 4 là số chẵn nên 4 nhân với bất kì số nào thì kết quả vẫn là số chẵn. Mà số chẵn thì sẽ chia hết cho 2.)
5b chia hết cho 2 => b có thể là: 2; 4; 6; 8; ... (Vì trong phép tính 5b có 5 là số lẻ nên khi nhân 5 với số chẫn ta mới được kết quả là số chẵn vì số chẵn chia hết cho 2.)
n = 4a + 5b chia hết cho 5
Để biểu thức 4a + 5b chia hết cho 5 thì 4a phải chia hết cho 5 và 5b phải chia hết cho 5.
4a chia hết cho 5 => a có thể là: 5; 10; 15; 20; 25; ... (Để phép tính 4a chia hết cho 5 thì ta phải nhân 4 với những số chia hết cho 5 (hay còn gọi la bội của 5.)
5b chia hết cho 5 => b có thể là: 1; 2; 3; 4; 5; ... (Vì trong phép tính 5b đã có 5 là số chia hết cho 5 (hay còn gọi là bội của 5) thì khi ta nhân 5 với bất kì số nào ta vẫn được kết quả chia hết cho 5.)
cho n biết n = 4a + 5b . Tìm các số a,b để n chia hết cho 2 ; n chia hết cho 5
Để n chia hết cho 2 => a + b chẵn
Trường hợp 1:
a chẵn => b chẵn = {0;2;4;6;8}
Trường hợp 2 :
b lẻ => a lẻ = {1;3;5;7;9}
Như vậy để a và b chia hết cho 2 thì a + b chẵn.
Để n chia hết cho 5
=> a + b chia hết cho 5
=> a + b có tận cùng = 0;5
=> (a ; b) = {(1;4)(4;1)(3;2)(2;3)(5;0)(0;5)
Như vậy để n chia hết cho 5 thì a + b có tận cùng = 0 hoặc 5
1) Cho A= (3n - 13)/(n - 1) (n thuộc Z )
a) Tìm n nguyên để A nguyên.
b) Tìm n nguyên để A là phân số tối giản.
2. Cho a,b thuộc N. Chứng minh rằng: 4a + b chia hết cho 5 và a + 4b chia hết cho 5
Bài 1: Ch a,b thuộc Z t/m:(17a+5b).(5a+17b) chia hết cho 11.CMR:: (17a+5b)(5a+17b) chia hết cho 121
Bài 2: Cho a,b thuộc N . CMR: ab(a^2-b^2)(4a^2-b^2) chia hết cho 5
Bài 3: Cho a,b thuộc Z.CMR: ab(a^2+b^2)(a^2-b^2) chia hết cho 30
Bài 4: Cho n thuộc Z.CMR: n^6-n^2 chia hết cho 60
CÁC BẠN GIÚP MÌNH NHÉ
Cho số n = 5 a + 4 b a ∈ N ; b ∈ N . Tìm các số a và b để:
a) n chia hết cho 2
b) n chia hết cho 5
c) n chia hết cho 10
Cho số n = 5a+4b (a;b ∈ N). Tìm các số a và b để:
a, n chia hết cho 2
b, n chia hết cho 5
c, n chia hết cho 10
a, n chia hết cho 2
Nên 5a ⋮ 2 do đó a ∈ {0;2;4;6;8} và b tùy ý
b, n chia hết cho 5
Nên 4b ⋮ 4 do đó b ∈ {0;5} và a tùy ý
c, n chia hết cho 10
a ∈ {0;2;4;6;8} và b ∈ {0;5}
Cho a , b biết ( a , b € N ) biết 4a +5b chia hết 23 hãy chứng minh 7a + 3b chia hết cho 23
Ta có 4a+5b chia hết cho 23 => 4(4a+5b)=16a+20b chia hết cho 23
16a+20b+7a+3b = 23a+23b chia hết cho 23
mà 16a+20b chia hết cho 23 nên 7a+3b chia hết cho 23 (dpcm)
A) Tìm các chữ số a,b để số 2a3b chia hết cho cả 2 ; 5 và 9
B) Tìm ước chung của các số 42 ; 54
C) Tìm các số tự nhiên N để N + 4 chia hết cho N + 1
a: Đặt \(A=\overline{2a3b}\)
A chia hết cho2 và 5 khi A chia hết cho 10
=>b=0
=>\(A=\overline{2a30}\)
A chia hết cho 9
=>2+a+3+0 chia hết cho 9
=>a+5 chia hết cho 9
=>a=4
Vậy: \(A=2430\)
b: \(42=2\cdot3\cdot7;54=3^3\cdot2\)
=>\(ƯCLN\left(42;54\right)=2\cdot3=6\)
=>\(ƯC\left(42;54\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
c: \(n+4⋮n+1\)
=>\(n+1+3⋮n+1\)
=>\(3⋮n+1\)
=>\(n+1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{0;-2;2;-4\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;2\right\}\)
5. a) Tìm số 71 4a b . Biết rằng số 71 4a b chia hết cho cả 2; 5 và 9. b) Tìm các chữ số a, b. Biết rằng 50 21 a b chia hết cho 2; 9 và chia 5 dư 1.