Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Trần Linh Anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
20 tháng 12 2016 lúc 18:03

Vì \(x^2-8x+22=\left(x^2-8x+16\right)+6=\left(x-4\right)^2+6>0\) nên A luôn xác định.

Từ giả thiết ta có \(A\left(x^2-8x+22\right)=2x^2-16x+43\Leftrightarrow x^2\left(A-2\right)-8x\left(A-2\right)+\left(22A-43\right)=0\)

Để tồn tại GTNN của A thì phải tồn tại giá trị của x thỏa mãn GTNN đó, tức là PT trên có nghiệm.

Xét \(\Delta'=16\left(A-2\right)^2-\left(A-2\right)\left(22A-43\right)=\left(A-2\right)\left(11-6A\right)\ge0\)

\(\Leftrightarrow\frac{11}{6}\le A\le2\)

Vậy min A = 11/6 , max A = 2 (còn giá trị của x bạn tự tìm)

Trần Quốc Đạt
20 tháng 12 2016 lúc 19:05

Mình bổ sung cho lời giải bạn Ngọc một chút (dù gì đây là bài lớp 8),

Bạn có thể tìm trước min, max của A ngoài nháp, lúc trình bày để né Delta bạn viết như sau:

VD: minA=\(\frac{11}{6}\).

Bước 1: Làm cho mẫu có số 6. \(A=\frac{6\left(2x^2-16x+43\right)}{6\left(x^2-8x+22\right)}\).

Bước 2: Làm cho tử có số 11. \(A=\frac{11\left(x^2-8x+22\right)+x^2-8x+16}{6\left(x^2-8x+22\right)}\).

Nếu bạn làm đúng thì phần dư ra là một bình phương, quả nhiên  \(x^2-8x+16=\left(x-4\right)^2\).

Vậy \(A=\frac{11}{6}+\frac{\left(x-4\right)^2}{6\left(x^2-8x+22\right)}\ge\frac{11}{6}\). Đẳng thức xảy ra tại \(x=4\).

Hình như biểu thức không có max.

Law Trafargal
Xem chi tiết
Phạm Minh Quang
10 tháng 10 2019 lúc 0:35

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

Bao Nguyen Trong
Xem chi tiết
Trần Hoàng Thiên Bảo
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2019 lúc 20:53

\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\)

Đặt \(\sqrt{x^2-4x+5}=a\Rightarrow a\ge1\)

\(M=2\left(x^2-4x+5\right)+\sqrt{x^2-4x+5}-4\)

\(M=2a^2+a-4=2a^2+3a-2a-3-1\)

\(M=a\left(2a+3\right)-\left(2a+3\right)-1\)

\(M=\left(a-1\right)\left(2a+3\right)-1\)

Do \(a\ge1\Rightarrow\left\{{}\begin{matrix}a-1\ge0\\2a+3>0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)\left(2a+3\right)\ge0\Rightarrow M\ge-1\)

\(\Rightarrow M_{min}=-1\) khi \(a=1\Leftrightarrow x=2\)

Trương Võ Thanh Ngân
Xem chi tiết
Nguyễn Nam
24 tháng 11 2017 lúc 12:05

\(2x^2-8x+14\)

\(=2x^2-8x+8+6\)

\(=\left(2x^2-8x+8\right)+6\)

\(=2\left(x^2-4x+4\right)+6\)

\(=2\left(x^2-2.x.2+2^2\right)+6\)

\(=2\left(x-2\right)^2+6\)

Vậy GTNN của \(2x^2-8x+14\) bằng 6 khi \(x-2=0\Leftrightarrow x=2\)

vũ tiến đạt
24 tháng 11 2017 lúc 12:11

Đã thêm vào Video

Vu Ngoc Anh
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 7 2019 lúc 14:45

\(P=x^4-8x^3+24x^2-32x+16+3x^2-12x+12-5\)

\(P=\left(x-2\right)^4+3\left(x-2\right)^2-5\ge-5\)

\(\Rightarrow P_{min}=-5\) khi \(x=2\)

Nguyễn thị hồng
1 tháng 7 2019 lúc 15:21

trả lời :

P=x4 - 8x3 + 27x2 - 44x +23

P= (x-2)4 + 3(x-2)2 - 5 ≥ 5

Pmin= -5 khi x = 2

các bn tham khảo thôi nha (cs khi sai ráng chịu)ha

Thùy Dung Hà
Xem chi tiết
Akai Haruma
1 tháng 7 2019 lúc 18:36

Lời giải:

Ta có:
\(x^4-8x^3+27x^2-44x+23\)

\(=(x^4-8x^3+16x^2)+11x^2-44x+23\)

\(=(x^2-4x)^2+11(x^2-4x)+23\)

\(=(x^2-4x)^2+8(x^2-4x)+16+3(x^2-4x)+7\)

\(=(x^2-4x+4)^2+3(x^2-4x+4)-5\)

\(=(x-2)^4+3(x-2)^2-5\geq -5\)

Vậy GTNN của $P$ là $-5$ khi $x=2$

le hoang anhquan
Xem chi tiết
Le Thi Khanh Huyen
14 tháng 12 2016 lúc 17:17

Phải là tìm GTLN chứ ?

Ta có :

\(A=\frac{7}{x^2-x+2}=\frac{7}{\left(x^2-x+\frac{1}{4}\right)+1,75}\)

\(=\frac{7}{\left(x-\frac{1}{2}\right)^2+1,75}\le\frac{7}{1,75}=4\)

\(\Leftrightarrow Max_A=4\Rightarrow x=\frac{1}{2}\)

Vậy ...