1. Cho B= (1/2) + (1/2)2 + (1/3)3 + (1/2)4 + ... + (1/2)98 + (1/2)99
Chứng minh: B<1
Cho
S=1/50 + 1/51 + 1/52 +… + 1/98 +1/99
Chứng tỏ rằng S > 1/2
\(S=\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{98}+\dfrac{1}{99}\)
\(S=\dfrac{1}{50}>100\) \(\dfrac{1}{51}>100\) \(\dfrac{1}{52}>100\) \(....\) \(\dfrac{1}{98}>100\) \(\dfrac{1}{99}>100\)
\(\Rightarrow S>\dfrac{1}{100}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}+\dfrac{1}{100}\\ \) {50 số 100}
\(S>50\cdot\dfrac{1}{100}=\dfrac{1}{2}\)
\(S>\dfrac{1}{2}\)
a, Cho A= 1/99 + 2/98 + 3/47 + .......... + 98/2 + 99/1
B= 1/2 + 1/3 + 1/4 + ..........+ 1/99 + 1/100
Tính B/A
b, Cho A= 1/49 + 2/48 + 3/47 +.......+ 48/2 +49/1
B= 1 + 2/3 + 2/4 +......+ 2/49 + 2/50
Tính A/B
a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)
\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)
\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B
=>B/A=1/100
b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)
\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)
\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
=>A/B=25
Tính giá trị biểu thức:
A=1×3+2×4+...+98×100
B=1×2×3+2×3×4+...+48×49×50
Bài 2:
Chứng minh:1/5+1/7+...+1/101 không là số tự nhiên
Bài 3:
A=(1+1/2+1/3+...+1/98)×2×3×...×98
Chứng minh A chia hết cho 99
b)B=1+1/2+...+1/96 và B bằng phân số a/b.chứng minh:Bchia hết cho 97
Bài 3: a) Xét A=(1+1/2+1/3+....+1/98).2.3.4.5.....98
=(1+1/2+1/3+....+1/98).(9.11).2.3.4.....98
=(1+1/2+1/3+....+1/98).99.2.3.4....98⋮99
(đpcm)
a) Cho P=5+5^2+5^3+5^4+5^5+...+5^102 .Chứng minh P:6 b) Cho A=1+4+4^2+4^3+...+4^100 Chứng minh A:5 c) Cho B = 1+2+2^2+2^3+...2^98 Chứng minh B:7 d) Cho C =1+3+3^2+3^3+...+3^104 Chứng minh C:40
ChoN=1/2+(1/2)^2+(1/2)^3+(1/2)^4+......+(1/2)^98+(1/2)^99. Chứng minh B<1
\(\frac{N}{2}=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\frac{N}{2}=N-\frac{N}{2}=\frac{1}{2}-\frac{1}{2^{100}}\Rightarrow N=1-\frac{1}{2^{99}}
cho B=1*98+2*97+3*6+..+2*97+1*98/1*2+2*3+3*4+97*98+98*99
a,Tính tổng : 1/2+1/2^2+1/2^3+...+1/2^1998
b,Chứng minh A=1/3^2-1/3^4+...+1/3^4n-2-1/3^4n+...+1/3^98-1/3^100
a) Đặt M=1/2+1/22+1/23+...+1/21998
=>2M=1+1/2+1/22+1/23+...+1/21997
2M-M=(1+1/2+1/22+1/23+...+1/21997)-(1/2+1/22+1/23+...+1/21998)
M=1-1/21998
hứng minh rằng B<1 với:
A= 1/2+(1/2)^2+(1/2)^3+(1/2)^4+.......+ (1/2)^98+(1/2)^99
cho
B=1/2+(1/2)2+(1/2)3+(1/2)4+...+(1/2)98+(1/299
a)rút gon tổng b
b)c/minh B>1