Cho \(\frac{a}{b}=\frac{c}{d}.\)Chứng minh rằng:
\(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
cho\(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng
\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
Đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)= k ( k \(\in\)Z , k khác 0 )
=> a = bk ; c = dk
Ta có:
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) suy ra: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
Vậy nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\).Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right).cd=ab.\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Leftrightarrow a^2cd-abd^2=abc^2-b^2cd\)
\(\Leftrightarrow ad\left(ac-bd\right)=bc\left(ac-bd\right)\)
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta co:a^2+b^2•cd=c^2+d^2•ab=>(a+b)^2•ab=(c+d)^2•cd=>(a+b)^3=(c+d)^3=>a•(b^3)=c•(d^3)=>a/c=b^3/d^3=>a/c=b/d=>a/b=c/d. Do la dieu Phai Chung minh
cho tỉ lệ thức : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}.\)
\(\Rightarrow\left(a^2+b^2\right).cd=ab.\left(c^2+d^2\right)\)
\(\Rightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Rightarrow a^2cd+b^2cd-abc^2-abd^2=0\)
\(\Rightarrow\left(a^2cd-abc^2\right)+\left(b^2cd-abd^2\right)=0\)
\(\Rightarrow ac.\left(ad-bc\right)+bd.\left(bc-ad\right)=0\)
\(\Rightarrow ac.\left(ad-bc\right)-bd.\left(ad-bc\right)=0\)
\(\Rightarrow\left(ad-bc\right).\left(ac-bd\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}ad-bc=0\\ac-bd=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}ad=bc\\ac=bd\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{a}{b}=\frac{c}{d}\left(đpcm\right).\\\frac{a}{b}=\frac{d}{c}\end{matrix}\right.\)
Vậy \(\frac{a}{b}=\frac{c}{d}.\)
Chúc bạn học tốt!
cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng :\(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\left(đpcm\right)\)
\(\frac{a}{b}\) =\(\frac{c}{d}\) =>\(\frac{a}{c}\) =\(\frac{b}{d}\) =\(\frac{a-b}{c-d}\) =>\(\frac{ab}{cd}\) = \(\frac{a}{c}\) x\(\frac{b}{d}\) = \(\frac{a-b}{c-d}\) x \(\frac{a-b}{c-d}\) = \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Còn với\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) thì bạn chỉ cần thay dấu trừ thành dấu công là được
Chúc bạn học tốt
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với \(a,b,c,d\ne0\). Chứng minh rằng hoặc \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
Cho tỉ lệ thức\(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Đặt a/b=c/d=k
=> a=bk ; c=dk
Khi đó : a^2-b^2/c^2-d^2 = b^2k^2-b^2/d^2k^2-d^2 = b^2.(k^2-1)/d^2.(k^2-1) = b^2/d^2
Mà a/b=c/d => b/d = a/c => b^2/d^2 = a.b/c.d
=> a^2-b^2/c^2-d^2 = ab/cd
=> ĐPCM
Tk mk nha
1) Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh: \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
2) Cho\(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{a^2-d^2}{c^2-d2}=\frac{ab}{cd}\)
b) \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
1, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
2, a, Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
b, Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
cho ti lệ thuc \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)
các bạn giai giup mk bai nay voi 1k cho ai đúng thank nhung bạn giúp đỡ
Chào các bạn, hôm nay mình có một bài toán khá khó muốn nhờ các bạn giải giúp
a) Chứng minh rằng nếu\(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Cho \(\frac{a}{b}=\frac{c}{d}\). Hãy chứng minh: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2), ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2), ta có: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
a) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)