\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right).cd=ab.\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Leftrightarrow a^2cd-abd^2=abc^2-b^2cd\)
\(\Leftrightarrow ad\left(ac-bd\right)=bc\left(ac-bd\right)\)
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta co:a^2+b^2•cd=c^2+d^2•ab=>(a+b)^2•ab=(c+d)^2•cd=>(a+b)^3=(c+d)^3=>a•(b^3)=c•(d^3)=>a/c=b^3/d^3=>a/c=b/d=>a/b=c/d. Do la dieu Phai Chung minh