CMR: Giá trị biểu thức là 1 số nguyên
\(\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}\:\:\:\:\:\:\:\)
CMR: Giá trị biểu thức là 1 số nguyên
\(\frac{\sqrt{2\sqrt{3}+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\:\sqrt{6}+\sqrt{2}}\:\:\:\)
\(\frac{\sqrt{2\sqrt{3}+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\\ =\frac{\sqrt{2\sqrt{3}+\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2\sqrt{3}+\sqrt{5-\sqrt{12}-1}}}{\sqrt{6}+\sqrt{2}}\\ =\frac{\sqrt{2\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2\sqrt{3}+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{3\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)
mk ko pit lm tiep dau nha
Bài 1: Tính giá trị của biểu thức:\(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{2017\sqrt{2018}+2018\sqrt{2017}}\)
Bài 2: Chứng minh rằng các biểu thức sau có giá trị là số nguyên
A = \(\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)
B = \(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
Bài 5. Cho biểu thức: C = \(\dfrac{2\sqrt{x}-3}{\sqrt{x}-2}\) 𝑣ớ𝑖 𝑥 ≥ 0; 𝑥 ≠ 4. Tìm x nguyên để C đạt giá trị nguyên nhỏ nhất
Bài 6. Cho biểu thức: D = \(\dfrac{x-3}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm x nguyên để D có giá trị là số nguyên
Bài 5:
\(C=\frac{2\sqrt{x}-3}{\sqrt{x}-2}=\frac{2(\sqrt{x}-2)+1}{\sqrt{x}-2}=2+\frac{1}{\sqrt{x}-2}\)
Để $C$ nguyên nhỏ nhất thì $\frac{1}{\sqrt{x}-2}$ là số nguyên nhỏ nhất.
$\Rightarrow \sqrt{x}-2$ là ước nguyên âm lớn nhất
$\Rightarrow \sqrt{x}-2=-1$
$\Leftrightarrow x=1$ (thỏa mãn đkxđ)
Bài 6:
$D(\sqrt{x}+1)=x-3$
$D^2(x+2\sqrt{x}+1)=(x-3)^2$
$2D^2\sqrt{x}=(x-3)^2-D^2(x+1)$ nguyên
Với $x$ nguyên ta suy ra $\Rightarrow D=0$ hoặc $\sqrt{x}$ nguyên
Với $D=0\Leftrightarrow x=3$ (tm)
Với $\sqrt{x}$ nguyên:
$D=\frac{(x-1)-2}{\sqrt{x}+1}=\sqrt{x}-1-\frac{2}{\sqrt{x}+1}$
$D$ nguyên khi $\sqrt{x}+1$ là ước của $2$
$\Rightarrow \sqrt{x}+1\in\left\{1;2\right\}$
$\Leftrightarrow x=0; 1$
Vì $x\neq 1$ nên $x=0$.
Vậy $x=0; 3$
Bài 6:
Để D nguyên thì \(x-3⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{1;2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1\right\}\)
hay \(x\in\left\{0;1\right\}\)
Bài 1: Tính giá trị biểu thức: P=\(\sqrt{x+24+7\sqrt{2x-1}}+\sqrt{x+4-3\sqrt{2x-1}}\)
với\(\frac{1}{2}\le x\le5\)
Bài 2: Chứng minh rằng: P=\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)là 1 số nguyên
Bài 2
\(P=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+2\sqrt{12}+1}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{12}-1}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4-\sqrt{12}}}}{\sqrt{6}-\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}\cdot\sqrt{2}\cdot\sqrt{2+\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{2}\cdot\sqrt{4+2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{3+2\sqrt{3}+1}}{\left(\sqrt{3}+1\right)}\)
=\(\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{3}+1}{\left(\sqrt{3}+1\right)}=1\)
Vậy P là một số nguyên
Bài 1: Tính giá trị biểu thức: P=\(\sqrt{x+24+7\sqrt{2x-1}}+\sqrt{x+4-3\sqrt{2x-1}}\)
với\(\frac{1}{2}\le x\le5\)
Bài 2: Chứng minh rằng: P=\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)là 1 số nguyên
Cho \(P=\left(1+\dfrac{2}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}-1}\right).\left(1-\dfrac{6}{\sqrt{x}+5}\right)\)
a) Rút gọn biểu thức P
b) CMR: Biểu thức P chỉ nhận đúng một giá trị nguyên với \(0\le x,x\ne1\)
c) Tính giá trị của P khi x là số tự nhiên thỏa mãn \(\dfrac{\left(x+3\right)\left(x+4\right)}{3x}\in N\)
a, ĐK: \(x\ge0;x\ne1\)
\(P=\left(1+\dfrac{2}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}-1}\right).\left(1-\dfrac{6}{\sqrt{x}+5}\right)\)
\(=\left[\dfrac{x-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right].\dfrac{\sqrt{x}+5-6}{\sqrt{x}+5}\)
\(=\dfrac{x+5\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}-1}{\sqrt{x}+5}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
b, \(P=\dfrac{\sqrt{x}}{\sqrt{x}+1}=1-\dfrac{1}{\sqrt{x}+1}\in Z\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{-1;1\right\}\)
\(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow x=0\left(tm\right)\)
Vậy ta có điều phải chứng minh.
a: Ta có: \(P=\left(1+\dfrac{2}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}-1}\right)\cdot\left(1-\dfrac{6}{\sqrt{x}+5}\right)\)
\(=\dfrac{x-1+2\sqrt{x}-2+3\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+5-6}{\sqrt{x}+5}\)
\(=\dfrac{x+5\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+5}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
Bài 1: Rút gọn biểu thức:
\(A=\frac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\left(a>2\right)\)
\(B=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\left(ab\ne0\right)\)
Bài 2: Tính giá trị của biểu thức:
\(E=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{2017\sqrt{2018}+2018\sqrt{2017}}\)
Bài 3: Chứng minh rằng các biểu thức sau có gúa trị là số nguyên
\(A=\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)
\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
1) có bao nhiêu giá trị nguyên của x để biểu thức
\(M=\sqrt{x+4}+\sqrt{2-x}\) có nghĩa
2) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk nhé mk cần gấp
Bài 1:
Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)
Số giá trị nguyên thỏa mãn điều kiện là:
\(\left(2+4\right)+1=7\)