tim x thuoc z biet 1+2+3+...+x=210
a,tim x biet |x-2|+|3-2x|=2x+1
b,tim x,y thuoc Z biet xy+2x-y=5
c, tinh A=(1-1/15)(1-1/21)(1-1/28).....(1-1/210)
tim x thuoc N biet
x+(x+1)+(x+2)+(x+3)+.......+(x+30)=1240
1+2+3+.....+x=210
x+(x+1)+(x+2)+(x+3)+.......+(x+30)=1240
\(\Leftrightarrow\left(x+x+x.+...x\right)+\left(1+2+3...+30\right)=1240\)
\(\Rightarrow30x+465=1240\)
\(\Rightarrow30x=1240-465=775\)
\(\Rightarrow30x=775\)
\(V\text{ậy}x=\frac{155}{6}\)
1+2+3+.....+x=210
\(\left(1+x\right).x=210\)
\(\Rightarrow x=14\)
x+(x+1)+(x+2)+...+(x+30)=1240
=>x+x+1+x+2+...+x+30=1240
=>(x+x+x+...+x)+(1+2+...+30)=1240
=>31x+[(30-1):1+1] . (30+1) :2=1240
=>31x+30.31:2=1240
=>31x+15.31=1240
=>31(x+15)=1240
=>x+15=1240:31=40
=>x=40-15=25
1+2+3+...+x=210
=>[(x-1):1+1]. (x+1) : 2= 210
=>x.(x+1):2=210
=>x(x+1)=210.2=420
=>x(x+1)=20.21
=>x=20
+Tim x thuoc N, biet :
a/ x+(x+1)+(x+2)+....+(x+30)=1240
b/1+2+3+........+x=210
a) x + ( x+1 ) + ( x+2 ) + ... + ( x+30 ) = 1240
x + x + 1 + x + 2 + ... + x + 30 = 1240
( x + x + x + ... + x ) + ( 1 + 2 + ... + 30 ) = 1240
x.[( 30 - 0 ) : 1 + 1] + { [ ( 30 - 1 ) : 1 + 1] : 2}.( 30+1 ) = 1240
*Giải thích một chút: "x.[( 30 - 0 ) : 1 + 1]" là tính số lượng x. Ở đây có một ố x để nguyên thfi bạn hãy hiểu rằng nó ơợc công 0 vào nhé; "{ [ ( 30 - 1 ) : 1 + 1] : 2}.( 30+1 )" là tính tổng trong ngoặc, bạn nên tính tách ra thì tốt hơn, t lười!
x . 31 + 465 = 1240
x . 31 = 1240 - 465
x . 31 = 775
x = 775 : 31
x = 25
Vậy x 25
Chúc bạn học tốt!
tim x thuoc Z biet x^3-x^2+x-1=0
tim x thuoc Z biet :
(x-1)^2 =(x-3)^4
HELP ME:0!!
\(\left(x-1\right)^2=\left(x-3\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2-\left(x-3\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2-\left[\left(x-3\right)^2\right]^2=0\)
\(\Leftrightarrow\left[\left(x-1\right)-\left(x-3\right)^2\right]\left[\left(x-1\right)+\left(x-3\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1-x^2+6x-9\right)\left(x-1+x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(-x^2+7x-10\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy: ...
(x-1)^2 =(x-3)^4=\(\left\{{}\begin{matrix}1+1\\2+2\\3+3\\4+4\end{matrix}\right.=2+4+6+8=\sqrt[]{251234=\Sigma\dfrac{2}{2}22\dfrac{2}{2}}\max\limits_{212}=\dfrac{21}{23}2123=\sum\limits1^{ }_{ }\text{(x-1)^2 =x=}\sum1\)
Bổ sung cho @ Huỳnh Thanh Phong.
(- \(x^2\) + 7\(x\) - 10).(\(x^2\) - 5\(x\) + 8) = 0
(- \(x^2\) + 5\(x\) + 2\(x\) - 10).(\(x^2\) - \(\dfrac{5}{2}\)\(x\) - \(\dfrac{5}{2}\)\(x\) + \(\dfrac{25}{4}\) + \(\dfrac{7}{4}\)) = 0
[(- \(x^2\) + 5\(x\)) + (2\(x\) - 10)].[(\(x^2\) - \(\dfrac{5}{2}\)\(x\)) - (\(\dfrac{5}{2}\)\(x\) - \(\dfrac{25}{4}\)) + \(\dfrac{7}{4}\)] = 0
[ -\(x\)(\(x\) - 5) + 2.(\(x\) - 5)]. [\(x\)(\(x\) - \(\dfrac{5}{2}\)) - \(\dfrac{5}{2}\).(\(x\) - \(\dfrac{5}{2}\)) + \(\dfrac{7}{4}\)] = 0
(\(x\) - 5).(-\(x\) + 2).[(\(x-\dfrac{5}{2}\)).(\(x\) - \(\dfrac{5}{2}\)) + \(\dfrac{7}{4}\)] = 0
(\(x\) - 5).(-\(x\) + 2).[(\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{7}{4}\)] = 0 (1)
Vì (\(x\) - \(\dfrac{5}{2}\))2 ≥ 0 ⇒ (\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{7}{4}\) ≥ \(\dfrac{7}{4}\) (2)
Kết hợp (1) và (2) ta có:
\(\left[{}\begin{matrix}x-5=0\\-x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy \(x\in\) {2; 5}
tim x thuoc z biet
a,1/(1×2) + 1/(2×3) + ... + 2/(x(x+1)) = 2005/2010
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x.\left(x+1\right)}=\frac{2005}{2010}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{401}{402}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{401}{402}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{401}{402}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{402}\)
\(\Leftrightarrow x+1=402\Rightarrow x=401\)
tim x thuoc Z,biet : (x-1).(xy+3)
tim x thuoc Z,biet : (x-1).(xy+3)
(x-1).(xy+3)=?????
phải có kết quả mới làm đc
tim x thuoc z biet |x | - (-2) = -1
|x|-(-2)= -1
|x| = -1+(-2)
|x| = -3
vì x thuộc z nên=> x= _+ 3
vậy x =_+3
\(\left|x\right|-\left(-2\right)=-1\\ \Leftrightarrow\left|x\right|+2=-1\\ \Leftrightarrow\left|x\right|=-3\\ \Rightarrow x\in\varnothing\)
|x| - (-2) = -1
=> |x| + 2 = -1
=> |x| = -1 - 2
=> |x| = -3
Vì |x| = |-x| luôn ≥ 0
mà |x| = -3
=> x = ∅
Vậy không tìm được giá trị của x