Rút gọn biểu thức sau:
2x-1 - \(\frac{\sqrt{\left(x^2-10x+25\right)}}{x-5}\)
a, tìm điều kiện xác định của biểu thức :
A=\(\frac{2x+1}{\left(x^2+5x+6\right)\left(x^2+10x+24\right)-2x^2}\)
b Rút gọn biểu thức :B=\(\sqrt{x+2\sqrt{x-1}}\)+\(\sqrt{x-2\sqrt{x-1}}\) với x>1;x=1
Rút gọn biểu thức:
\(\left(x+5\right)\left(x^2-5x+25\right)-\left(x+3\right)^3+\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3\)
Ta có: \(\left(x+5\right)\left(x^2-5x+25\right)-\left(x+3\right)^3+\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3\)
\(=x^3+125-x^3-9x^2-27x-27+x^3-8-x^3+3x^2-3x+1\)
\(=-6x^2-30x+91\)
Rút gọn biểu thức sau:
\(\sqrt{\left(x-4\right)^2}+\:\frac{x-4}{\sqrt{x^2-8x+16}}\)
\(\sqrt{\left(x-4\right)^2}+\frac{x-4}{\sqrt{x^2-8x+16}}\)
\(=x-4+\frac{x-4}{\sqrt{\left(x-4\right)^2}}\)
\(=x-4+\frac{x-4}{x-4}\)
\(=x-4+1\)
\(=x-3\)
\(\sqrt{\left(x-4\right)^2}+\frac{x-4}{\sqrt{x^2-8x+16}}\)
\(=x-4+\frac{x-4}{\sqrt{\left(x+4\right)^2}}\)
\(=x-4+\frac{x-4}{x-4}\)
\(=x-4+1\)
= x - 3
cho mình làm lại
ĐKXĐ:x khác 4
\(\sqrt{\left(x-4\right)^2}+\frac{x-4}{\sqrt{x^2-8x+16}}\)
\(=\left|x-4\right|+\frac{x-4}{\sqrt{\left(x-4\right)^2}}\)
\(=\left|x-4\right|+\frac{x-4}{\left|x-4\right|}\)
+)Nếu x<4
PT trở thành \(4-x+\frac{x-4}{4-x}=4-x+\left(-1\right)=3-x\)
+)Nếu x > hoặc = 4
PT trở thành \(x-4+\frac{x-4}{x-4}=x-4+1=x-3\)
Vậy ...
Rút gọn biểu thức:
\(A=\left|\frac{\left|y-x\right|}{\left|xy\right|}\right|+\left|\frac{y+x}{xy}-\frac{2}{z}\right|+\frac{\left|y-x\right|}{\left|xy\right|}+\frac{y+x}{xy}+\frac{2}{z}\)
với \(x>5\); \(y=\frac{x^2-25}{x+\frac{10x+25}{x}}\); \(z=\frac{x^2-25}{x+\frac{15x+25}{x-5}}\)
Rút gọn biểu thức: \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+9\right)}\right).\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}\)
\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\sqrt{x}-2}=\frac{-3\sqrt{x}-3}{2x-8\sqrt{x}+6}\)
Nếu đề ko sai thì đấy là kết quả
1.cho biểu thức \(P=\left(\frac{2x+\sqrt{x}}{x\sqrt{x}-1}-\frac{2}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a, rút gọn biểu thức P
b,tìm các giá trị của x để biểu thức P có giá trị nguyên
2.. tìm các cặp số nguyên(x;y) thỏa mãn \(x^2+xy-3x-y-5=0\)
3..giải phương trình \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
Bài 1: Rút gọn biểu thức sau
\(P=\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
cho biểu thức \(A=\frac{x^2-x}{x^2-4x+4}:\left(\frac{x}{x-1}+\frac{x}{x-2}-\frac{x^2-2x-1}{x^2-3x+2}\right)\)
a)Rút gọn biểu thức A
b)Tìm GTNN của biêu r thức A khi x>2
Rút gọn phân thức sau : \(\frac{\left(x-2\right)\cdot\left(2x+2x^2\right)}{\left(x+1\right)+\left(4x-x^3\right)}\)
Tính \(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\)
mình cần gấp , mấy bạn giúp cho . tks nhiều
cái câu rút gọn phân thức, bạn xem lại đề thử nhé.
vậy bạn tính giúp bài phía dưới nha bạn
\(\left[\frac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right].\frac{5\left(2x-1\right)}{4x}\)
=\(\left[\frac{4x^2+4x+1-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\right].\frac{5\left(2x-1\right)}{4x}\)
=\(\frac{8x}{\left(2x-1\right)\left(2x+1\right)}.\frac{5\left(2x-1\right)}{4x}\)
=\(\frac{10}{2x+1}\)