Xác định các hằng số a và b x^3+ax+b chia hết cho x^2+2x-2
Xác định các hằng số a và b sao cho
a) x^4 + ax + b chia hết cho x^2 - 4
b) x^4 + ax^ + bx - 1 chia hết cho x^2 - 1
c) x^3 + ax + b chia hết cho x^2 + 2x - 2
(Chia đa thức cho đa thức)
Chỉ ý kiến của mk thôi
chưa chắc đúng
Tham khảo nhé
Xác định hằng số a và b sao cho: x3 + ax + b chia hết cho x2+2x-2
Xác định hằng số a và b sao cho: x3 + ax + b chia hết cho x2+2x-2
Xác định hằng số a và b sao cho: x3 + ax + b chia hết cho x2+2x-2
xác định các hằng số a và b sao cho:(x3+ax+b) chia hết cho (x2+x-2)
1,Xác định các hằng số a,b sao cho x^3+ax+b chia hết cho x^2+x-2
Ta có :
Nghiệm của x2 + x - 2 là x = 1 và x = -2
=> Để x3 + ax + b chia hết cho x2 + x - 2
thì x3 + ax + b cũng nhận x = 1 và x = -2 làm nghiệm
+) Với x = 1
Thế vào x3 + ax + b ta được
13 + a.1 + b = 0
=> 1 + a + b = 0
=> a + b = -1 (1)
+) Với x = -2
Thế vào x3 + ax + b ta được
(-2)3 + a.(-2) + b = 0
<=> -8 - 2a + b = 0
<=> -8 = 2a - b (2)
Từ (1) và (2) => \(\hept{\begin{cases}a+b=-1\\2a-b=-8\end{cases}}\)
Lấy (1) cộng (2) theo vế => 3a = -9 => a = -3
Thế a = -3 vào (1) => -3 + b = -1 => b = 2
Vậy \(\hept{\begin{cases}a=-3\\b=2\end{cases}}\)
Hoặc là dùng cách này
Ta có : x3 + ax + b có bậc 3
x2 + x - 2 có bậc là 2
=> Thương là một đa thức bậc 1
Giả sử đa thức thương đó là x + c + d
=> x3 + ax + b chia hết cho x2 + x - 2
khi và chỉ khi x3 + ax + b = ( x2 + x - 2 )( x + c + d )
<=> x3 + ax + b = x3 + cx2 + dx2 + x2 + cx + dx - 2x - 2c - 2d
<=> x3 + ax + b = x3 + x2( c + d + 1 ) + x( c + d - 2 ) - ( 2c + 2d )
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}c+d+1=0\\c+d-2=a\\2c+2d=-b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=2\end{cases}}\)
Vậy a = -3 ; b = 2
Chử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh HiểnChử Mạnh Hiển
2. Xác định các hằng số a,b, sao cho
a) x^4 + ax^2 + b chia hết cho x^2 -x +1
b) ax^3 + bx^2 + 5x - 50 chia hết cho x^2 + 3x - 10
c) ax^ 3 + bx - 24 chia hết cho ( x+1) ( x+3)
Xác định các hằng số a và b sao cho: x^4+4 chia hết cho x^2+ax+b
xác định các hằng số a và b sao cho:
ax^3 + bx^2 + 5x - 50 chia hết cho x^2 + 3x + 10