cho a^3+b^3+c^3=3abc .cmr:a+b+c=0 hoặc a=b=c
cho a+b+c=0
cmr:a^3+b^3+c^3=3abc
Ta có :
Giả thuyết : a + b + c = 0
(a + b + c)3 = 0
a3 + b3 + c3 + 3.(a + b)(b + c)(c + a) = 0
Từ a + b + c = 0
=> \(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
=> a3 + b3 + c3 + 3.(-c)(-a)(-b) = 0
=> a3 + b3 + c3 = 3abc
giai,cho,minh,bai,nay,di cho,a,b,c>=0.CMR:a^3+b^3+c^3>=3abc
a+b+c=0
a+b=-c
(a+b)^3=(-c)^3
a^3+3a^2b+3ab^2+b^3=(-c)^3
a^3+b^3+c^3=-3a^2b-3ab^2
a^3+b^3+c^3=-3ab(-c)
a^3+b^3+c^3=3abc
choA+B+C=0 CMR:a^3+b^3+c^3=3abc cmr:a^2+b^2+c^2=2(a^4+b^4+c^4)
Mn giúp mk vs:
Cho a+b+c=0
CMR:a3+b3+c3-3abc=0
Ta có : \(a+b+c=0\Rightarrow-a-b=c\)
\(\Rightarrow a^3+b^3+c^3-3abc=a^3+b^3+\left(-a-b\right)^3-3abc\)
\(=a^3+b^3-a^3-3a^2b-3ab^2-b^3-3abc\)
\(\Rightarrow-3a^2b-3ab^2-3abc=3ab\left(-a-b\right)-3abc\)
\(=3abc-3abc=0\) (đpccm)
Cho 3 số a,b,c sao cho a+b+c khác 0. Chứng minh a^3+b^3+c^3-3abc/a+b+c lớn hơn hoặc bằng 0
\(\frac{a^3+b^3+c^3-3abc}{a+b+c}=\frac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{a+b+c}=\frac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a+b+c}\)
\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a+b+c}=a^2+b^2+c^2-ab-bc-ca\)
\(=\frac{1}{2}\left(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\right)\)
\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\) (đpcm)
Cho a3+b3+c3=3abc chứng minh hoặc a+b+c=0 hoặc a=b=c
thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có :
a^3+b^3+c^3-3abc=0
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
luôn đúng do a+b+c=0
Cho các số a, b, c thỏa mãn a^3+ b^3+ c^3= 3abc với a, b, c khác 0. Chứng minh a+ b+c = 0 hoặc a=b=c
a3 + b3 + c3 = 3abc
⇒ a3 + b3 + c3 - 3abc = 0
⇒ ( a3 + b3 ) + c3 - 3abc = 0
⇒ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
⇒ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
⇒ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0
⇒ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0
⇒ \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)
+) a2 + b2 + c2 - ab - bc - ac = 0
⇒ 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0
⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
⇒ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0
⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0
VT ≥ 0 ∀ a,b,c . Dấu "=" xảy ra khi a = b = c
⇒ a + b + c = 0 hoặc a = b = c ( đpcm )
\(Cho\)\(:\)\(a+b+c=0\)
\(CMR:a^3+b^3+c^3=3abc\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^3=0\)
\(\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3=0\)
\(a^3+b^3+3ab\left(a+b\right)+c^3=0\)
\(a^3+b^3+c^3+3ab\left(-c\right)=0\)
\(a^3+b^3+c^3=3abc\)
Ta có:\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+3c^2-3ab\right)\)
\(=0\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\left(dpcm\right)\)
Cho \(a^3+b^3+c^3=3abc\). Chứng minh a+b+c=0 hoặc a=b=c
\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)