tim gtnn cua bieu thuc sau
A= 3/4+|x-1/5|
a,Tim GTNN cua bieu thuc \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b,Tim GTLN cua bieu thuc \(D=\frac{4}{\left(2x-3\right)^2+5}\)
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
cho cac so thuc duing x,y thoa man x+y<=3.Tim GTNN cua bieu thuc : P=1/5xy + 5/x+2y+5
\(P=\frac{1}{5xy}+\frac{xy}{20}+\frac{5}{x+2y+5}+\frac{x+2y+5}{20}-\frac{xy}{20}-\frac{x+2y+5}{20}\)
\(\ge2\sqrt{\frac{1}{5xy}.\frac{xy}{20}}+2.\sqrt{\frac{5}{x+2y+5}.\frac{x+2y+5}{20}}-\frac{x\left(3-x\right)+x+2\left(3-x\right)+5}{20}\)
\(=2.\frac{1}{10}+2.\frac{1}{2}-\frac{-x^2+2x+11}{20}\)
\(=\frac{x^2-2x+1}{20}+\frac{3}{5}=\frac{\left(x-1\right)^2}{20}+\frac{3}{5}\ge\frac{3}{5}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{5xy}=\frac{xy}{20}\\\frac{5}{x+2y+5}=\frac{x+2y+5}{20}\\\left(x-1\right)^2=0,x+y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\x+2y+5=10\\x=1,x+y=3\end{cases}\Leftrightarrow}x=1,y=2\)
Vậy min P=3/5 khi x=1, y=2
Em co cach nay ngan gon hon, cac ban co the tham khao
P=\(\frac{1}{5xy}\) + \(\frac{5}{x+2y+5}\)=\(\frac{1}{5xy}\)+\(\frac{25}{5\left(x+2y+5\right)}\)
= \(\frac{1^2}{5xy}\)+\(\frac{5^2}{5\left(x+2y+5\right)}\)
\(\geq\) \(\frac{\left(1+5\right)^{^2}}{5xy+5\left(x+2y+5\right)}\)
=\(\frac{36}{5\left(xy+x+2y+2+3\right)}\)
=\(\frac{36}{5\left(\left(x+2\right)\left(y+1\right)+3\right)}\)
=\(\frac{36}{5\left(\frac{\left(x+y+3\right)^2}{4}+3\right)}\) (do \((x+2)(y+1) \leq \frac {(x+y+3)^2}{4}\) )
=\(\frac{36}{5\left(\frac{\left(3+3\right)^2}{4}+3\right)}\) (do \(x+y \leq 3\) )
=\(\frac{3}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{5xy}=\frac{1}{x+2y+5}\\x+2=y+1\\x+y=3\end{cases}}\Leftrightarrow x=2,y=1\)
Vậy GTNN của P là 3/5 khi và chỉ khi x=2,y=1
Tim GTNN cua bieu thuc
\(M=\frac{x^4+x^2+5}{x^4+2x^2+1}\)
Ta có: M = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)
M = \(\frac{\left(x^4+2x^2+1\right)-\left(x^2+1\right)+5}{\left(x^2+1\right)^2}\)
M = \(1-\frac{1}{x^2+1}+5\cdot\frac{1}{\left(x^2+1\right)^2}\)
Đặt \(\frac{1}{x^2+1}=y\)
Khi đó, ta có: M = \(1-y+5y^2=5\left(y^2-\frac{1}{5}y+\frac{1}{100}\right)+\frac{19}{20}=5\left(y-\frac{1}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}\forall y\)
Dấu "=" xảy ra <=> y - 1/10 = 0 <=> y = 1/10 <=> \(\frac{1}{x^2+1}=\frac{1}{10}\) <=> x2 + 1 = 10
<=> x2 = 9 <=> \(x=\pm3\)
Vậy MinM = 19/20 khi x = 3 hoặc x = -3
Dạng này bạn chỉ cần để ý: \(x^4+2x^2+1=\left(x^2+1\right)^2\) là bình phương của một biểu thức.
Rồi đặt \(x^2+1=y\Rightarrow x^2=y-1\) rồi thay vào M là được!
ap dung bdt co si tim gtnn cua bieu thuc y=x/3 +5/2x+1;x>1/2
TIM GTNN cua bieu thuc
2x-\(3\sqrt{x}\)+4
\(=2x-\frac{2.3}{2\sqrt{2}}.\sqrt{2x}+\frac{9}{8}+\frac{23}{8}\)
\(=\left(\sqrt{2x}-\frac{3\sqrt{2}}{2}\right)^2+\frac{23}{8}\ge\frac{23}{8}\)
=> GTNN của BT là 23/8
tim gia tri lon nhat cua bieu thuc :
a) C= 5+ 15/ 4 I 3x+7 I +3
b) D= 2 I 7x+5I +11/ I 7x+5I +4
tim GTNN cua bieu thuc :
a) A= I x+1I + 1,7
b) B= I x-2/3I +3/7
c) C= 5+ -8/ 4x I5x+7I 24
Tim GTNN cua bieu thuc:
B=|x-2|+|x-6|+5
B = |x - 2| + |x - 6| + 5
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
B = |x - 2| + |x - 6| + 5 = |x - 2| + |6 - x| + 5
B ≥ |x - 2 + 6 - x| + 5 = 4 + 5 = 9
Dấu "=" xảy ra <=> (x - 2)(x - 6) ≥ 0
<=> 2 ≤ x ≤ 6
Vậy gtnn của B là 9 tại 2 ≤ x ≤ 6
B = |x-2|+|x-6|+5
giá trị nhỏ nhất của B là 9 nha bạn
K mk nha
TIM GTLN HOAC GTNN CUA CAC BIEU THUC SAU
B=5-2Z^2
C=/X-3/+/5-X/
B = 5 - 2z2
Vì 2z2 ≥ 0 => B = 5 - 2z2 ≤ 5
Dấu "=" xảy ra khi 2z2 = 0 => z = 0
Vậy Bmax là 5 tại z = 0
C = |x - 3| + |5 - x| ≥ |x - 3 + 5 - x| = 2
Dấu "=" xảy ra khi (x - 3)(5 - x) ≥ 0 <=> 5 ≥ x ≥ 3
Vậy Cmin = 2 tại 5 ≥ x ≥ 3
tim gia tri lon nhat cua bieu thuc :
b) D= 2 I 7x+5I +11/ I 7x+5I +4
tim GTNN cua bieu thuc :
c) C= 5+ -8/ 4x I5x+7I 24