Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Giap van Khoi
Xem chi tiết
Nguyễn Văn Anh Kiệt
4 tháng 8 2017 lúc 14:52

a)\(x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+2xy+y^2+y^2-2y+1=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}y-1=0\\x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=-y=-1\end{cases}}\)

Vậy x=-1 y=1

Trần Anh
4 tháng 8 2017 lúc 14:58

a)  \(x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-y\\y=1\end{cases}\Rightarrow}x=-1;y=1}\)

b) \(5x^2+3y^2+z^2-4x+6xy+4z+6=0\)

\(\Leftrightarrow\left(2x^2-4x+2\right)+\left(3x^2+6xy+3y^2\right)+\left(z^2+4z+4\right)=0\)

\(\Leftrightarrow2.\left(x-1\right)^2+3.\left(x+y\right)^2+\left(z+2\right)^2=0\)

\(\Rightarrow\)  \(\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)

           \(\left(x+y\right)^2=0\Rightarrow x+y=0\Rightarrow y=-x=-1\) 

            \(\left(z+2\right)^2=0\Rightarrow z+2=0\Rightarrow z=-2\)

Nguyễn Thị Hiền
Xem chi tiết
HằngAries
3 tháng 1 2020 lúc 8:10

2y(x-1)-5(x-1)-5=148

(2y-5)(x-1)=153

Tự túc

Khách vãng lai đã xóa
Nguyễn Anh Thảo
22 tháng 11 2020 lúc 13:11

biết được nữa chắc, trả lời phải trả lời hết chứ đồ ki bo

Khách vãng lai đã xóa
Tỉoyrhkd
Xem chi tiết
ghkjv giuhi
Xem chi tiết
Phạm Hồ Thanh Quang
10 tháng 7 2017 lúc 8:18

a) x2 + 2y2 - 2xy + 8y + 7
= x2 - 2xy + y2 + y2 + 8y + 16 - 9
= (x - y)2 + (y + 4)2 - 9
GTNN của biểu thức trên là -9

b) 5x2 + y2 + 2xy - 12x - 18
= x2 + 2xy + y2 + 4x2 - 12x + 9 - 27
= (x + y)2 + (2x - 3)2 - 27
GTNN của biểu thức trên là -27

c) 3x2 + 4y2 + 4xy + 2x - 4y + 26
= 2x2 + 4xy + 2y2 + x2 + 2x + 1 + 2y2 - 4y + 2 + 23
= (\(\sqrt{2}\)x + \(\sqrt{2}\)y)2 + (x + 1)2 + 23
GTNN của biểu thức trên là 23

Câu d mình ko biết làm

Nguyễn Huệ Lam
10 tháng 7 2017 lúc 9:11

d) D= 5x^2+9y^2-12xy+24x-48y+82

\(=4x^2+9y^2+64-12xy+32x-48y+x^2-8x+16+2\)

\(=\left[\left(2x\right)^2+\left(3y\right)^2+8^2-2.2x.3y+2.2x.8-2.3y.8\right]+\left(x^2-2.x.4+4^2\right)+2\)

\(=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2\ge2\)

Vậy GTNN của D là 2 tại \(\hept{\begin{cases}\left(2x-3y+8\right)^2=0\\\left(x-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-3y+8=0\\x-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}}\)

Thượng Hoàng Yến
Xem chi tiết
Lê Quang Tuấn Kiệt
24 tháng 6 2018 lúc 12:34

......................?

mik ko biết

mong bn thông cảm 

nha ................

Nguyễn Thị Hồng Hạnh
24 tháng 6 2018 lúc 12:53

a) x2+2y2+2xy-2y+1=0

\(\Leftrightarrow\)(x2+2xy+y2)+(y2-2y+1)=0

\(\Leftrightarrow\)(x+y)2+(y-1)2=0

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy x=-1, y=1

Huy Hoàng
24 tháng 6 2018 lúc 13:31

a/ \(x^2+2y^2+2xy-2y+1=0\)

<=> \(\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)

<=> \(\left(x+y\right)^2+\left(y-1\right)^2=0\)

<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\)

<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

b/ \(x^2+2y^2+2xy-2x+2=0\)

<=> \(\left(x^2+2xy+y^2\right)+\left(2y-2x+2\right)=0\)

<=> \(\left(x+y\right)^2+2\left(y-x+1\right)=0\)

<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\2\left(y-x+1\right)=0\end{cases}}\)

<=> \(\hept{\begin{cases}x+y=0\\y-x+1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x+y=0\\y-x=-1\end{cases}}\)

<=> \(\hept{\begin{cases}x+y=0\left(1\right)\\x-y=1\left(2\right)\end{cases}}\)

Trừ (1) và (2)

=> \(2y=-1\)

<=> \(y=-\frac{1}{2}\)

<=> \(x=\frac{1}{2}\)(vì \(x+y=0\)<=> \(x=-y\))

bac luu
Xem chi tiết
Nguyễn Nam
6 tháng 12 2017 lúc 17:00

\(5x^2+6x-4xy-2y+2+y^2=0\)

\(\Leftrightarrow4x^2+x^2+2x+4x-4xy-2y+1+1+y^2=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(4x-2y\right)+\left(x^2+2x+1\right)+1=0\)

\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(2x-y+1\right)^2+\left(x+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y+1\right)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2.\left(-1\right)-y+1=0\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2-y+1=0\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1-y=0\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)

Vậy \(x=-1\)\(y=-1\)

Trần Quốc Lộc
6 tháng 12 2017 lúc 17:06

Phép nhân và phép chia các đa thức

leduccuong
Xem chi tiết
Đào Thu Hoà
Xem chi tiết
Đào Thu Hoà
19 tháng 5 2019 lúc 19:47

Lâu rồi  hổng thấy ai giải nên giải luôn ak 

Ta có \(5x^2+2xy+2y^2=\left(2x+y\right)^2+\left(x-y\right)^2\ge\left(2x+y\right)^2\Rightarrow\sqrt{5x^2+2xy+2y^2}\ge2x+y.\)

           \(2x^2+2xy+5y^2=\left(x+2y\right)^2+\left(x-y\right)^2\ge\left(x+2y\right)^2\Rightarrow\sqrt{2x^2+2xy+5y^2}\ge x+2y.\)

Suy ra \(Q\ge3\left(x+y\right)=3.1=3\)dấu = xảy ra khi \(\hept{\begin{cases}x+y=1\\x-y=0\end{cases}\Leftrightarrow}x=y=\frac{1}{2}\)

vân chi
Xem chi tiết
Nguyễn Huy Tú
11 tháng 2 2022 lúc 19:39

Câu 1 :

\(3\left(x-3\right)\left(x+7\right)+\left(1-4\right)\left(x+4\right)+18\)

\(=3\left(x^2+4x-21\right)-3\left(x+4\right)\)

\(=3x^2+12x-63-3x-12=3x^2+9x-75\)

Thay x = 1/2 vào ta được 

\(\dfrac{3.1}{4}+\dfrac{9}{2}-75=-\dfrac{279}{4}\)

Câu 2 : 

\(5x^2+5xy+5x=5x\left(x+y+1\right)\)

Thay x = 60 ; y = 50 ta được 

\(300\left(60+50+1\right)=33300\)

Câu 3 : 

\(4x^2y^2+2xy^2+6x^2y=2xy\left(2xy+y+3x\right)\)

Thay x = 10 ; y  = 1/2 ta được 

\(\dfrac{2.10.1}{2}\left(\dfrac{2.10.1}{2}+\dfrac{1}{2}+30\right)=405\)

Nguyễn Lê Phước Thịnh
11 tháng 2 2022 lúc 19:37

1: \(=3\left(x^2+4x-21\right)+x^2-16+18\)

\(=3x^2+12x-63+x^2+2\)

\(=4x^2+12x-61\)

\(=4\cdot\dfrac{1}{4}+12\cdot\dfrac{1}{2}-61=1-61+6=-54\)

2: \(=5\cdot60^2+5\cdot60\cdot50+5\cdot60=33300\)

3: \(=4\cdot10^2\cdot\dfrac{1}{4}+2\cdot10\cdot\dfrac{1}{4}+6\cdot100\cdot\dfrac{1}{2}=405\)