Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Ngọc Khánh Trang
Xem chi tiết
Võ Đông Anh Tuấn
25 tháng 7 2016 lúc 17:27

a2 + b2 + c= ab + ac + bc

=> 2a2 + 2b2 + 2c2= 2ab + 2ac + 2bc

=> ( a2 - 2ab + b2) + ( a2 - 2ac + c2) + ( b2 - 2bc + c2)=0

=> ( a - b)2 + ( a - c)2 + ( b - c)2 =0

Vì ( a - b)>= 0

    ( a - c)2>= 0

    ( b - c)2>=0

=> Để  ( a - b)2 + ( a - c)2 + ( b - c)2 =0 thì a - b =0 ; a - c=0; b-c=0

=> a=b=c

=> Tam giác đó là tam giác đều

Bùi Nhật Vy
Xem chi tiết
ST
18 tháng 7 2018 lúc 10:05

Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...

Trinh Bảo
Xem chi tiết
Trần Đức Thắng
2 tháng 8 2015 lúc 21:02

=> 2(a^2 + b^2 + c^2) = 2 ( ab + bc +ca) 

=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac 

=> a^2 - 2ab + b^2 + b^2 - 2bc+ c^2 + c^2 - 2ac + a^2 = 0

=> ( a- b)^2 + ( b-  c)^2 + ( c -a )^2 = 0 

Vì ( a- b)^2>=0  (1)

   ( b - c)^2 >= 0 (2)

     ( c -a )^2 >= 0  (3)

Từ (1)(2) và (3) => ( a- b)^2 + ( b-  c)^2 + ( c -a )^2 = 0 khi 

a - b = 0 và b - c = 0 và c - a = 0 

=> a = b  và b = c  và c = a 

=> a= b =c 

VẬy là tam giác đều ĐÁp ấn C

Đào Đức Mạnh
2 tháng 8 2015 lúc 20:59

a^2+b^2+c^2=ab+bc+ca=>2(a^2+b^2+c^2)=2(ab+ac+ca)

2a^2+2b^2+2c^2-2ab-2ac-2bc=0.

a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+c^2=0

(a-b)^2+(b-c)^2+(c-a)^2=0. => (a-b)^2=0 => a-b=0 => a=b

(b-c)^2=0 => b-c=0 => b=c

(c-a)^2=0 => c-a=0 =>c=a. Vậy a=b=c. Do đó tam giác đó là tam giác đều => C là đáp án đúng

 

Toàn Lê Phúc
Xem chi tiết
Cold Wind
4 tháng 12 2016 lúc 16:00

\(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

Vậy tam giác đó là tam giác đều 

bao quynh Cao
4 tháng 12 2016 lúc 16:18

\(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\left(1\right)\)

vi   \(\left(a-b\right)^2\ge0\)

 \(\left(a-c\right)^2\ge0\)

\(\left(b-c\right)^2\ge0\)

de \(\left(1\right)\) xay ra thi \(\hept{\begin{cases}a-b=0\\a-c=0\\b-c=0\end{cases}\Leftrightarrow a=b=c}\)

         \(\Leftrightarrow\)do la tam giac deu

Cold Wind
4 tháng 12 2016 lúc 16:24

Dài quá, dùng phương pháp hệ số giả định (hình như gọi thế này) là ra ngay: 

Aa + Bb + Cc = Ab + Bc + aC Phần hệ số in hoa => a=b; b=c; c=a Xét lần lượt từng cặp hạng tử tương ứng của 2 vế

Bangtan Sonyeondan
Xem chi tiết
coolkid
30 tháng 10 2019 lúc 18:10

Ta có:
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)-3\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\) hay tam giác ABC đều.

Khách vãng lai đã xóa
nguyễn văn nhật nam
Xem chi tiết
Hoàng Nhật Thiên Hoàng
Xem chi tiết
Chibi Anh
Xem chi tiết
Lê Thị Nhung
26 tháng 2 2020 lúc 16:44

Câu 1: C

Câu 2:A

Câu 3:C

Câu 4 C

Câu 5: B

Câu 6 1Đ, 2Đ, 3Đ, 4S

Câu 7: a, Đ

Câu 10 A.

Các câu khác k rõ đề

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2019 lúc 11:23

Chọn C