Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Thi Nhuong
Xem chi tiết
Ngô Tấn Đạt
26 tháng 10 2016 lúc 20:50

1/√1 > 1/10
1/√2 > 1/10
1/√3 > 1/10
....................
1/√99 > 1/10
1/√100 = 1/10
Cộng từng vế ta có:
1/√1 + 1/√2 + 1/√3 + ... + 1/√100 >100.1/0 = 10 (Đpcm)

Đặng Minh Triều
2 tháng 2 2017 lúc 19:24

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

khúc thị xuân quỳnh
Xem chi tiết
Như Trần
Xem chi tiết
Y
16 tháng 6 2019 lúc 17:17

+ \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)-n}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó : \(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

\(=1-\frac{1}{10}=\frac{9}{10}\)

Akane Miyamoto
Xem chi tiết
Phùng Minh Quân
12 tháng 4 2018 lúc 10:19

Ta có : 

\(1>\frac{1}{10}=\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(............\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\)\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

Do từ \(1\) đến \(100\) có \(100-1+1=100\) số tự nhiên nên có \(100\) phân số \(\frac{1}{\sqrt{100}}\) ta được : 

\(A>100.\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow\)\(A>10\) ( đpcm ) 

Vậy \(A>10\)

Chúc bạn học tốt ~ 

♥ℒℴѵe♥
Xem chi tiết
Nguyễn Anh Quân
27 tháng 2 2018 lúc 12:53

Có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

        \(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

         ..................

          \(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

=> \(\frac{1}{\sqrt{1}}\)+  \(\frac{1}{\sqrt{2}}\)+ ......... +  \(\frac{1}{\sqrt{100}}\)> 1/10 + 1/10 + ...... +1/10 ( có 100 phân số 1/10 )

                                                                            = 100/10 = 10

=> ĐPCM

Tk mk nha

Nguyễn Phạm Hồng Anh
27 tháng 2 2018 lúc 13:00

Do \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>...>\frac{1}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>100.\frac{1}{\sqrt{100}}\) 

\(=\sqrt{100}=10\RightarrowĐPCM\)

tth_new
28 tháng 2 2018 lúc 13:15

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

 . .. . . .  .

  \(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)( 100 phân số \(\frac{1}{\sqrt{100}}\)) . Mà:

  \(\sqrt{100}=10\RightarrowĐPCM\)

   

Le hoa
Xem chi tiết
kaitovskudo
8 tháng 8 2016 lúc 10:53

Ta có:\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\) và \(\frac{1}{\sqrt{100}}=\frac{1}{10}\)

=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)      (100 số hạng 1/10)

                                                                                \(=100.\frac{1}{10}\)

                                                                                  \(=10\) (đpcm)

bảo
Xem chi tiết
ngonhuminh
21 tháng 10 2016 lúc 10:33

đề sai

chứng minh ngược lại C/m:>10

căn2<can3<can 4=>

1/căn2>1/căn3>1/căn4

1/căn2+1/can3+1/Căn4>3/can4=3/2

1/can5+....+1/can9>5.1/can9=5/3

1/can10+...+1/can16>7/can16=7/4

...

1/can81+...1/can100>18.1/can100= 19/10

A>B=1+3/2+5/3+7/4+...+19/10>10

KAl(SO4)2·12H2O
30 tháng 10 2017 lúc 16:00

Đề sai thật.

Xin phép sửa lại:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Giải:

\(\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

....

\(\sqrt{99}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng từng vế trên HĐT ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=\frac{100}{10}\)

\(=10\)

Đinh Đức Hùng
Xem chi tiết
Le Phuc Thuan
11 tháng 3 2017 lúc 12:00

chào hen 

Thùy Dương
11 tháng 3 2017 lúc 12:04

Ta có :

\(\frac{1}{\sqrt{1}}>\frac{1}{10}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{10}\)

.....

\(\frac{1}{\sqrt{99}}>\frac{1}{10}\)

\(\frac{1}{\sqrt{100}}=\frac{1}{10}\)

Cộng vế theo vế ta có :\(\frac{1}{\sqrt{1}}\frac{1}{\sqrt{2}}+......+\frac{1}{\sqrt{99}}+\frac{1}{100}>100.\frac{1}{10}=10\)

pham thi thu thao
Xem chi tiết
Phùng Minh Quân
13 tháng 4 2018 lúc 20:49

( Bạn đặt A = (...)  biểu thức đã cho ) 

Ta có : 

\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(............\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\)\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

\(\Rightarrow\)\(A>100.\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow\)\(A>10\) ( đpcm ) 

Vậy \(A>10\)

Chúc bạn học tốt ~