Cho ABC (^A=90°) ; BD là tia phân giác của góc B (D ∈ AC ). Trên tia BC lấy điểm E sao cho BA = BE
a) Chứng minh: ^ABD = ^EBD
b) Chứng minh : ^BED vuông tại E
c) So sánh AD và DC
d) Tia ED cắt AB tại F. Chứng minh rằng AB + EF > BF
1, cho tam giác abc ,a=90 độ ,đường cao ah = 12 ,bc=25.tình ab, ac, hb,hc
2, cho tam giác abc ,a=90 độ ,ab/ac = 3/2 ,đường cao ah = a .tính hb.hc.ab,ac,
3, cho abc , a=90 độ , ah=120 ,bc=289 . tính ab.ac.bh.hc
4, cho tam giác abc , a=90 độ đường cao ah=120 , ac=136 .tính ab,bc và phân giác ad và góc a
3:
Đặt HB=x; HC=y
Theo đề, ta có: x+y=289 và xy=120^2=14400
=>x,y là các nghiệm của phương trình:
a^2-289a+14400=0
=>a=225 hoặc a=64
=>(x,y)=(225;64) và (x,y)=(64;225)
TH1: BH=225cm; CH=64cm
=>\(AB=\sqrt{225\cdot289}=15\cdot17=255\left(cm\right)\) và \(AC=\sqrt{64\cdot289}=7\cdot17=119\left(cm\right)\)
TH2: BH=64cm; CH=225cm
=>AB=119m; AC=255cm
cho tam giác abc vuông tại a khẳng định nào sau đây là đúng
A b+a=90 B a+c=90 C b+c=90 Db+c=180
cho tam giác abc vuông tại a khẳng định nào sau đây là đúng
A b+a=90 B a+c=90 C b+c=90 Db+c=180
cho tam giác ABC có A=90, BC=2a.Đường cao AH. Điểm A thay đổi sao cho BAC=90,BC=2a.Tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AHO lớn nhất?
cho tam giác ABC có A=90, BC=2a.Đường cao AH. O là trung điểm BC .Điểm A thay đổi sao cho BAC=90,BC=2a.Tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AHO lớn nhất?
cho tam giác abc có a bằng 90 độ chứng tỏ b không bằng 90 c không bằng 90
giải nhanh mình tick cho
Xét \(\Delta ABC\) có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( tổng ba góc trong tam giác )
Mà : \(\widehat{A}=90^o\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(\Rightarrow\hept{\begin{cases}\widehat{B}\ne90^o\\\widehat{C}\ne90^o\end{cases}}\) ( đpcm )
Theo định lí thì tổng 1 tam giác ABC thì bằng 180 độ
=>Nếu A=90 độ => B+C=90 độ
Mà B+C=90 độ =>B,C < 90 độ
Vậy B hoặc C sẽ ko bằng 90 độ
#Học Tốt#
1, Cho tam giác ABC ( góc A=90 độ). Từ trung điểm I của cạnh AC kẻ đường thẳng vuông góc với cạnh huyền BC tại D. C/m: BD^2-CD^2=AB^2
2, Cho tam giác ABC( góc A=90 độ). phân giác AD, đường cao AH. biết BD=15cm, CD=20cm, tính BH, CH
3, Cho tam giác ABC( góc A=90 độ). AB=12cm, AC=16cm, phân giác AD, đường cao AH. tính HB,HC,HD
4, Cho tam giác ABC( góc A=90 độ) đường cao AH. Tính chu vi tam giác ABC biết AH= 14 cm, HB/HC=1/4
giúp đỡ mình nhé, mình đang cần gấp
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
Cho hình vẽ, biết AB//DC, A=90°, D=60°. Số đo các góc ABC và DCB là A. B=90°, C=130°
Cho tam giác ABC có A=90° r=3 R=7 tính diện tích ABC
cho tam giác ABC có A=90 độ.Phân giác góc B cắt AC tại E.Trên cạnh B lấy điểm Dsao cho AB=BD a,chứng minh BDE=90 độ b,trên tia đới của tia AB lấy F sao cho AF=DC.chứng minh FE=CE c,chứng minh BE=FC
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔABE=ΔDBE
Suy ra: \(\widehat{BDE}=90^0\)
Cho tam giác ABC, A^ = B^ + 90, đường cao AH. Chứng minh:
a) ACH^ = ABC^
b) CH^2 = BH.AH
cho tam giác ABC , B lớn hơn 90 độ và có đường phân giác AD , đường cao AH . Chứng minh a, 2 HAD = HAB + HAC b , ABC = 90 độ + HAB , C = 90độ - HAC c, HAD = 1/2 ( ABC-C)