Tìm số nguyên n sao cho: n2 + 3n - 13 chia hết cho n + 3
Tìm số nguyên n, sao cho n^2+3n-13 chia hết cho n+3 .
\(\frac{n^2+3n-13}{n+3}=\frac{n\left(n+3\right)-13}{n+3}=1-\frac{13}{n+3}\)
Để \(n^2+3n-13\) chia hết cho n+3 thì 13 phải chia hết cho n+3 hay n+3 là ước của 13
=> n+3={-13; -1; 1; 13} => n={-16; -4; -2; 10}
Tìm các số nguyên n sao cho:
a) n2 – 10 chia hết cho n – 1
b) n2 + 4n + 13 chia hết cho n + 2
tìm số nguyên n sao cho
n^2 +3n -13 chia hết cho n+3
n^2 +3 chia hết cho n-1
\(n^2+3⋮n-1\)
\(\Rightarrow n\left(n-1\right)+n+3⋮n-1\)
\(\Rightarrow n+3⋮n-1\)
\(\Rightarrow\left(n-1\right)+4⋮n-1\)
\(\Rightarrow4⋮n-1\)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
Vậy.......................................
Tìm số nguyên n ,sao cho:
a}n^2+3n-13 chia hết cho n+3
b}n^2+3 chia hết cho n-1
a) n^2 + 3n - 13 chia hết cho n + 3
n(n + 3) - 13 chia hết cho n + 3
n(n + 3) chia hết cho n + 3
Nên 13 chia hết cho n + 3
Tự tìm nhé!
mk chỉ biết làm phần a thôi
a) ta có: n2+3n-13 chia hết cho n+3
n(n+3) -13 chia hết cho n+3
ta thấy n(n+3) chia hết cho n+3 => 13 cũng phải chia hết cho n+3
=> n+3 E Ư(13)={ 1;13;-1;-13}
n+3 | 1 | 13 | -1 | -13 |
n | -2 | 10 | -4 | -16 |
Tìm số nguyên n, sao cho:
n mũ 2 + 3n -13 chia hết cho n + 3
n2 + 3n - 13 chia hết cho n + 3
n(n + 3) - 13 chia hết cho n + 3
n(n + 3) chia hết cho n +3
< = > 13 chia hết cho n + 3
n + 3 thuộc U(13) = {-13;-1;1;13}
n + 3= -13 => n = -16
n + 3 = -1 => n = -4
n + 3 = 1 => n = -2
n + 3 = 13 => n = 10
Ta có
\(\frac{n^2+3n-13}{n+3}=\frac{n\left(n+3\right)-13}{n+3}=n-\frac{13}{n+3}\)
Để \(n^2+3n-13\)chia hết \(n+3\)
Thì 13 chia hết cho n+3
Hay n+3 thuộc Ư(13)
n+3=(-13;-1;1;13)
n=(-16;-4;-2;10)
Nếuthấy bài làm của mình đúng thì tick nha bạn.Chúc bạn một năm mới hanh phúc,vui vẻ,học giỏi,mạnh khoẻ nha...
Nguyễn Quốc Khánh đúng rồi đó Đặng Hồng Minh
cho số nguyên n, biết n thỏa mãn ; n2 + 3n - 13 chia hết 3+n. vậy giá trị nhỏ nhất của n là
n2 + n3 - 13 chia hết cho n + 3
<=> n.(n+3) - 13 Chia hết cho n + 3
mà n.(n+3) chia hết cho n+3
=) 13 chia hết cho n+3
=) n+3 Thuộc Ư(13) = (-13 ;-1;1;13)
=) n thuộc (-16;-4;-;2;10 )
Vậy giá trị nhỏ nhất của N là - 16
\(n^2+3n-13\) \(⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)-13⋮n+3\)
Mà n(n+3) chia hết cho n+3
\(\Rightarrow\left(n+3\right)\inƯ\left(13\right)=\left(-13;-1;1;13\right)\)
\(\Rightarrow n\in\left(-16;-4;-2;10\right)\)
Vậy \(GTNN\)của \(n=-16\)
n2 + n3 - 13 chia hết cho n + 3
<=> n.(n+3) - 13 Chia hết cho n + 3
mà n.(n+3) chia hết cho n+3
=) 13 chia hết cho n+3
=) n+3 Thuộc Ư(13) = (-13 ;-1;1;13)
=) n thuộc (-16;-4;-;2;10 )
Vậy giá trị nhỏ nhất của N là - 16
Tìm số nguyên n , sao cho
a, 3n-13 chia hết cho n+3
b , 2n+3 chia hết cho n-1
a) Đặt \(A=\frac{3n-13}{n+3}=\frac{3\left(n+3\right)-22}{n+3}=3-\frac{22}{n+3}\)
=> 22 \(⋮\)n + 3 => n + 3 \(\in\)Ư(22) = { \(\pm1;\pm2;\pm11;\pm22\)}
n + 3 | 1 | -1 | 2 | -2 | 11 | -11 | 22 | -22 |
n | -2 | -4 | -1 | -5 | 8 | -14 | 19 | -25 |
b) Đặt \(B=\frac{2n+3}{n-1}=\frac{2\left(n-1\right)+5}{n-1}=2+\frac{5}{n-1}\)
=> 5 \(⋮\)n - 1 => n - 1 \(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
\(\left(a\right)3n-13⋮n+3\)
\(3n-13=3\left(n+3\right)-22\)
\(=>n+3=Ư\left(22\right)\)
\(n+3=\left\{-22;-11;-2;-1;1;2;11;22\right\}\)
\(=>n=\left\{-25;-14;-5;-4;-2;-1;8;19\right\}\)
\(\left(b\right)2n+3⋮n-1\)
\(2n+3=2\left(n-1\right)+5\)
\(=>n-1=Ư\left(5\right)\)
\(n-1=\left\{-5;-1;1;5\right\}\)
\(=>n=\left\{-4;0;2;6\right\}\)
a) Để \(3n-13⋮n+3\)
=> \(3n+9-22⋮n+3\)
=> \(3\left(n+3\right)-22⋮n+3\)
Vì \(3\left(n+3\right)⋮n+3\)
=> \(-22⋮n+3\)
=> \(n+3\inƯ\left(-22\right)\)
=> \(n+3\in\left\{1;-1;2;-2;11;-11;22;-22\right\}\)
=> \(n\in\left\{-2;-4;-1;-5;8;-14;19;-25\right\}\)
b) \(2n+3⋮n-1\)
=> \(2n-2+5⋮n-1\)
=> \(2\left(n-1\right)+5⋮n-1\)
=> \(2\left(n-1\right)⋮n-1\)
=> \(5⋮n-1\)
=> \(n-1\inƯ\left(5\right)\)
=> \(n-1\in\left\{1;-1;5;-5\right\}\)
=> \(n\in\left\{2;0;6;-4\right\}\)
Tìm số nguyên n sao cho :
a, n2 +3n -13 chia hết cho n+3
b, n2+3 chia hết cho n-1
a) n2 + 3n - 13 chia hết cho n + 3
n(n + 3) - 13 chia hết cho n + 3
13 chia hết cho n + 3
n + 3 thuộc U(13) = {-13 ; -1 ; 1 ; 13}
n thuộc {-16 ; -4; -2 ; 10}
b) n2 + 3 chia hết cho n - 1
n - 1 chia hết cho n - 1
n(n - 1) chia hết cho n - 1
n2 - n chia hết cho n - 1
< = > [(n2 + 3) - (n2 - n)] chia hết cho n - 1
n + 3 chia hết cho n - 1
n - 1 + 4 chia hết cho n - 1
4 chia hết cho n - 1
n - 1 thuộc U(4)= {-4 ; -2 ; -1 ; 1 ; 2; 4}
n thuộc {-3 ; -1 ; 0 ; 2 ; 3 ; 5}
Bài 6. Tìm số nguyên n biết:
a) – 13 là bội của n – 2
b) 2n - 1 là ước của 3n + 2
c) n2 + 2n - 7 chia hết cho n + 2
d) n2+3n−5 là bội của n−2.
a) – 13 là bội của n – 2
=>n−2∈Ư (−13)={1; −1;13; −13}
=> n∈{3;1;15; −11}
Vậy n∈{3;1;15; −11}.
b) 3n + 2 ⋮2n−1 => 2(3n + 2) ⋮2n−1 => 6n + 4 ⋮2n−1 (1)
Mà 2n−1⋮2n−1 => 3(2n−1) ⋮2n−1 => 6n – 3 ⋮2n−1 (2)
Từ (1) và (2) => (6n + 4) – (6n – 3) ⋮2n−1
=> 7 ⋮2n−1
=> 2n−1 ∈Ư(7)={1; −1;7; −7}
=>2n ∈{2;0;8; −6}
=>n ∈{1;0;4; −3}
Vậy n ∈{1;0;4; −3}.
c) n2 + 2n – 7 ⋮n+2
=>n(n+2)−7⋮n+2
=>7⋮n+2=>n+2∈{1; −1;7; −7}
=>n∈{−1; −3;5; −9}
Vậy n∈{−1; −3;5; −9}
d) n2+3n−5 là bội của n−2
=> n2+3n−5 ⋮ n−2
=> n2−2n+5n−10+5 ⋮ n−2
=> n(n - 2) + 5(n - 2) + 5 ⋮ n−2
=> 5 ⋮ n−2=>n−2∈{1; −1;5; −5}=>n∈{3; 1;7; −3}
Vậy n∈{3; 1;7; −3}.