a) tim GTNN: A=(2x+1/3)4-1
b) tin GTLN : B=(4/9x-2/15)6+3
C=13/(3x+2)2+11
b1. Phân tích đthức -> nhân tử.
a) x^3 - 3x^2 - 4x +13
b) x^4 - 5x^2 +4
c) (x+y+z)^3 -x^3 - y^3 - z^3
d) 45+ x^3 -5x^2 - 9x
e) x^4 - 2x^3 - 3x^3 - 2x -3
b2. tìm GTLN hoặc GLNN
a) A = 2x^2 - 8x - 10 -> GTNN
b) B = 9x - 3x^2 -> GTLN
2. a. \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18\)
\(=2\left(x-2\right)^2-18\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-2\right)^2-18\ge-18\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy minA = - 18 <=> x = 2
b. \(B=9x-3x^2=-3\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)
\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{27}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy maxB = 27/4 <=> x = 3/2
Sửa đề:x3-3x2-4x+12
a,x3-3x2-4x+12
=(x3-3x2)-(4x+12)
=x2(x-3)-4(x-3)
=(x2-4)(x-3)
b,x4- 5x2 +4
x4-4x2-x2+4
(x4-x2)-(4x2+4)
x2(x2-1)-4(x2-1)
(x2-4)(x2-1)
Bài 1.
a) x3 - 3x2 - 4x + 12 ( mạn phép sửa 13 thành 12, chứ để 13 là không phân tích được :> )
= x2( x - 3 ) - 4( x - 3 )
= ( x - 3 )( x2 - 4 )
= ( x - 3 )( x - 2 )( x + 2 )
b) x4 - 5x2 + 4
Đặt t = x2
Đa thức <=> t2 - 5t + 4
= t2 - t - 4t + 4
= t( t - 1 ) - 4( t - 1 )
= ( t - 1 )( t - 4 )
= ( x2 - 1 )( x2 - 4 )
= ( x - 1 )( x + 1 )( x - 2 )( x + 2 )
c) ( x + y + z )3 - x3 - y3 - z3
= ( x + y + z )3 - ( x3 + y3 + z3 )
= ( x + y + z )3 - [ ( x + y + z )3 - 3( x + y )( y + z )( z + x ) ] ( chỗ này bạn xem HĐT tổng ba lập phương nhé )
= ( x + y + z )3 - ( x + y + z )3 + 3( x + y )( y + z )( z + x )
= 3( x + y )( y + z )( z + x )
d) 45 + x3 - 5x2 - 9x
= ( x3 - 5x2 ) - ( 9x - 45 )
= x2( x - 5 ) - 9( x - 5 )
= ( x - 5 )( x2 - 9 )
= ( x - 5 )( x - 3 )( x + 3 )
e) x4 - 2x3 + 3x2 - 2x - 3 ( sửa -3x3 -> 3x2 )
= x4 - x3 - x3 + 3x2 - x2 + x2 - 3x + x - 3
= ( x4 - x3 + 3x2 ) - ( x3 - x2 + 3x ) - ( x2 - x + 3 )
= x2( x2 - x + 3 ) - x( x2 - x + 3 ) - 1( x2 - x + 3 )
= ( x2 - x - 1 )( x2 - x + 3 )
Bài 2.
A = 2x2 - 8x - 10
= 2( x2 - 4x + 4 ) - 18
= 2( x - 2 )2 - 18
2( x - 2 )2 ≥ 0 ∀ x => 2( x - 2 )2 - 18 ≥ -18
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MinA = -18 <=> x = 2
B = 9x - 3x2
= -3( x2 - 3x + 9/4 ) + 27/4
= -3( x - 3/2 )2 + 27/4
-3( x - 3/2 )2 ≤ 0 ∀ x => -3( x - 3/2 )2 + 27/4 ≤ 27/4
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MaxB = 27/4 <=> x = 3/2
Tim gtnn, gtln neu co:
A= 3x^2 +9x+17/3x^2 + 9x+7
B= 2x^2-16x+41/x^2-8x+22
C= -16/5x^2 + 20x + 26
D= 1/3x^2 - 9x +15
\(A=\dfrac{3x^2+9x+17}{3x^2+9x+7}=1+\dfrac{10}{3x^2+9x+7}=1+\dfrac{10}{3\left(x^2+2.x.\dfrac{9}{2}+\dfrac{81}{4}\right)-\dfrac{215}{4}}\\ =1+\dfrac{10}{3\left(x+\dfrac{9}{2}\right)^2-\dfrac{215}{4}}\le\dfrac{35}{43}\)
Câu khác giải TT
a) Tìm GTNN của biểu thức A=(2x+1/3)^4-1
b)Tìm GTLN của biểu thức B=(4/9x -2/15)^6+3
Hộ mik nhanh nhé
a) GTNN: A=x(x-3)(x-4)(x-7)
b) GTNN: B=2x\(^2\)+y\(^2\)-2xy-2x+3
c) GTNN: A=\(\frac{2}{6x-5-9x^2}\)
d) GTNN: B=\(\frac{3x^2+9x+\text{1}7}{3x^2+9x+7}\)
e) GTNN: A=\(\frac{3-4x}{x^2+\text{1}}\)
f) GTLN: A=\(\frac{3-4x}{x^2+\text{1}}\)
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
1, tim GTLN cua A=13/(x+5)^2+7
2, tim GTNN cua B=|x+2017|+(y+3)^2+2017
3, cho a-1/2=b+3/4=c-5/6 va 5a-3b-4c=46. Tim a,b,c.
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
1. Tìm GTNN của A= \(\frac{x^2-2x+2018}{x^2}\)
2. Tìm GTLN của B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
3. Tìm GTLN của M= \(\frac{3x^2+14}{x^2+4}\)
4. Cho x+y=2. Tìm GTNN của A= \(x^3+y^3+2xy\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
ê viết lộn dòng này :v
\(MinA=\frac{2017}{2018}\)nha
1. Tìm GTNN
C = |x - 1/2| + (y + 2)^2 +11
2. Tìm GTLN
a) C = - |2 - 3x| + 1/2
b) D = - 3 - |2x + 4|
Tìm GTLN hay GTNN
A=3x^2-9x+5
B= -2x^2N+5x+2
C=(1-x) (3x+4)