2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2 - 2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4
rut gọn B=x^4(y^2-z^2)+y^4(z^2-x^2)+z^4(x^2-y^2)/x^2(y-z)+y^2(z-x)+z^2(x-y)
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
do x,y,z≥0 nên x2≥0 , y+z≥0
áp dụng bất đẳng thức cosi cho 2 số dương \(\dfrac{x^2}{y+z}\) và y+z/4
x^2/y+z +(y+z)/4≥2\(\sqrt{\dfrac{x^2}{y+z}.\dfrac{\left(y+z\right)}{4}}\) =x (1)
y^2/x+z+(x+z)/4≥2\(\sqrt{\dfrac{y^2}{x+z}.\dfrac{x+z}{4}}\) =y (2)
z^2/y+x+(y+x)/4≥2\(\sqrt{\dfrac{z^2}{y+x}.\dfrac{y+x}{4}}\) =z (3)
từ (1)(2)(3)
➜\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)+(y+z/4)+(z+x)/4+(x+y)/4 ≥ x+y+z
⇔\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) +(a+b+c)/2 ≥x+y+z
⇔\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) ≥ (x+y+z)/2
⇔\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) ≥1 (vì x+y+z=2)
vậy giá trị nhỏ nhất của \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) =1
Nham ko phai Nesbit, Cauchy-Schwarz ra luon
Phân tích các đa thức sau thành nhân tử
a) (x^2+y^2+z^2)(x+y+z)^2+(xy+yz+zx)^2
b) 2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4
a,Từ giả thiết ta có
(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2
=(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2
Đặt x2+y2+z2=a
xy+yz+zx=b
=>(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2
=a(a+2b)+b2
=a2+2ab+b2
=(a+b)2
=(x2+y2+z2+xy+yz+zx)2
câu b hơi dài mình gửi sau nhé
Ta có: 2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4
Gọi x^4+y^4+z^4=a
x^2+y^2+z^2=b
x+y+z=c
=>2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4=2a-b^2-2bc^2+c^4
=2a-2b^2+b^2-2bc^2+c^4
=2(a-b^2)+(b+c^2)^2
Ta có
2(a-b2)=2[x^4+y^4+z^4-(x^2+y^2+z^2)2]
=2[x^4+y^4+z^4-x^4-y^4-z^4-2x2y2-2y2z2-2z2x2]
=2.(-2)(x2y2+y2z2+z2x2)
=-4(x2y2+y2z2+z2x2)
Lại có
(b+c^2)^2
=[(x^2+y^2+z^2)+(x+y+z)2]2
=[(x^2+y^2+z^2)-(x^2+y^2+z^2)-2(xy+yz+zx)]2
=4(xy+yz+zx)2
=>2(a-b^2)+(b+c^2)^2
=-4(x2y2+y2z2+z2x2)+4(xy+yz+zx)2
=8xyz(x+y+z)
phân tích đa thức sau thành nhân tử : B=2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4 toán 8
hân tích đa thức sau thành nhân tử : B=2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4 toán 8
Cho x+y+z=0, CMR: x^4+y^4+z^4=2(x^2.y^2+y^2.z^2+x^2.z^2)
Phân tích đa thức thành nhân tử bằng phương pháp đặt biến phụ
2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4
3x=2y và x^3-y^3=35
x/2=y/3=z/4 và 2x+y-32=-10
x/3=y/2=z/4 và x mủ 2+y mủ 2+z mủ 2=220
x/2=y/3,y/4=z/5
x/2=3y,5y=4z và x+y-z=15
x/y=3/7,y/z=4/5 và x+y-z=20
x-1/2=y-2/3=z-3/4 và x+2y-3z=5
mong giải nhanh giúp
phân tích đa thức thành nhân tử
2(x^4+ y^4 + z^4) - ( x^2 + y^2 + z^2)^2 -2 ( x^2+ y^2 + z^2) (x +y + z)^2 + ( x+ y + z)^4