tìm x :
a, 3x . ( x +1/5 ) = 0
b, ( x -2) ( 3+x) = 0
c, (x-3) (x +9) > 0
ai onl làm ơn giải cái nhoa!
tìm x thuộc Q ;
a, 3x . (x+1/5) = 0
b, (x-2) (3+x) = 0
c, (x-3) (x+9) > 0
thánh nào onl làm mơn giải vs nhoa
làm đc bài nào hay bài đó nha!
a)
\(3x\left(x+\frac{1}{5}\right)=0\)
=>_3x=0
|_x+1/5=0
=> _x=0
|_x=-15
b)(x-2)(3+x)=0
=> _x-2=0
|_ 3+x=0
=> _x=2
|_x=-3
c) để (x-3)(x+9)>0
thì x≠3; x≠-9
để (x-3)(x+9)>0
=> (x-3) và (x+9) phải cùng dấu
TH1:để (x-3) và (x+9) cùng lớn hơn 0 thì x>4
TH2:để(x-3) và (x+9) cùng nhỏ hơn 0 thì x< -9
vậy để (x-3)(x+9) >0 thì -9<x<4 và x≠3; x≠-9
Tìm x biết:
a) (2x - 3).(x + 5) = 0
b) 3x.(x - 2) - 7.(x - 2) = 0
c) 5x.(2x - 3) - 6x + 9 = 0
a)(2x-3)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy x=3/2 hoặc x=-5
a) \(\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};-5\right\}\)
b) \(3x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{2;\dfrac{7}{2}\right\}\)
c) \(5x\left(2x-3\right)-6x+9=0\)
\(\Leftrightarrow5x\left(2x-3\right)-3\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};\dfrac{3}{5}\right\}\)
a: Ta có: \(\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
b: Ta có: \(3x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{3}\end{matrix}\right.\)
c: Ta có: \(5x\left(2x-3\right)-6x+9=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Bài 2: giải phương trình sau
a) \(X^4\)-\(x^2\)-2=0
b) (x+1)\(^4\)-x\(^2\)+2)\(^2\)=0
c)3x\(^2\)-2x-8=0
Bài 3: giải phương trình sau
a) x\(^3\)-0,25=0
b) x\(^4\)+2x\(^3\)+x\(^2\)=0
c) x\(^3\)-1=0
d) 6x\(^2\)-7x+2=0
Mong có người giải giùm xin kẻm ơn :>
Bài 3:
b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)
hay \(x\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)
=>x-1=0
hay x=1
d: \(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)
a)15x^2 -3x=0
b)(3x -2)(x +3)+(x^2 -9)=0
c)(x -1)^3 -(x +1)(2 -3x)=0
a: \(\Leftrightarrow3x\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{5}\end{matrix}\right.\)
Tìm x
a) 4x(x-2) + x-2 = 0
b) (3x-1)^2 - 9 = 0
c) x^3 - 8 + (x-2)(x+1) = 0
`a)4x(x-2)+x-2=0`
`<=>(x-2)(4x+1)=0`
`<=>[(x-2=0),(4x+1=0):}`
`<=>[(x=2),(x=-1/4):}`
Vậy `S={2;-1/4}.`
`b)(3x-1)^3-9=0`
`<=>(3x-1-3)(3x-1+3)=0`
`<=>(3x-4)(3x+2)=0`
`<=>[(3x-4=0),(3x+2=0):}`
`<=>[(x=4/3),(x=-2/3):}`
Vậy `S={4/3;-2/3}.`
`c)x^3-8+(x-2)(x+1)=0`
`<=>(x-2)(x^2+2x+4)+(x-2)(x+1)=0`
`<=>(x-2)(x^2+3x+5)=0`
Mà `x^2+3x+5=(x+3/2)^2+11/4>=11/4>0`
`<=>x-2=0`
`<=>x=2`
Vậy `S={2}`
a) Ta có: \(4x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{4}\end{matrix}\right.\)
b)Ta có: \(\left(3x-1\right)^2-9=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
c) Ta có: \(x^3-8+\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4+x+1\right)=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Tìm x
a) 4x(x-2) + x - 2 = 0
b) (3x-1)^2 - 9 = 0
c) x^3 - 8 + (x-2)(x+1) = 0
a, \(4x\left(x-2\right)+x-2=0\Leftrightarrow\left(4x+1\right)\left(x-2\right)=0\Leftrightarrow x=-\dfrac{1}{4};x=2\)
b, \(\left(3x-1\right)^2-9=0\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\Leftrightarrow x=\dfrac{4}{3};x=-\dfrac{2}{3}\)
c, \(x^3-8+\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)+\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+5\ne0\right)=0\Leftrightarrow x=2\)
a) Ta có: \(4x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{4}\end{matrix}\right.\)
b) Ta có: \(\left(3x-1\right)^2-9=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
a)9x2 – 49 = 0
b)(x – 1)(x + 2) – x – 2 = 0
c)(4x + 1)(x - 2) - (2x -3)(2x + 1) = 7
d)x(3x + 2) + (x + 1)2 – (2x – 5)(2x + 5) = 0
e)(x + 3)(x2 – 3x + 9) –x(x – 1)(x + 1) – 27 = 0
f)(4x-3)^2-3x(3-4x)=0
\(a,\Leftrightarrow\left(3x-7\right)\left(3x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{7}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\\ \Leftrightarrow-3x=6\Leftrightarrow x=-2\\ d,\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\\ \Leftrightarrow4x=-26\Leftrightarrow x=-\dfrac{13}{2}\\ e,\Leftrightarrow x^3+27-x^3+x-27=0\\ \Leftrightarrow x=0\\ f,\Leftrightarrow\left(4x-3\right)\left(4x-3+3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a) 9x2-49=0
(3x)2-72=0
<=> (3x-7)(3x+7)=0
th1: 3x-7=0
<=>3x=7
<=>x=\(\dfrac{7}{3}\)
th2: 3x+7=0
<=>3x=-7
<=>x=\(-\dfrac{7}{3}\)
B5:Giải pt:
a)2x\(^2\)-8=0
b)3x\(^3\)-5x=0
c)x\(^4\)+3x\(^2\)-4=0
d)3x\(^2\)+6x-9=0
e)\(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\)
g)5x\(^4\)+6x\(^2\)-11=0
a. 2x\(^2\)-8=0
2x\(^2\)=8
x\(^2\)=4
x=2
b.3x\(^3\)-5x=0
x(3x\(^2\)-5)=0
\(\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=^+_-\sqrt{5}\end{matrix}\right.\)
c.x\(^4\)+3x\(^2\)-4=0\(^{\left(\cdot\right)}\)
đặt t=x\(^2\) (t>0)
ta có pt: t\(^2\)+3t-4=0 \(^{\left(1\right)}\)
thấy có a+b+c=1+3+(-4)=0 nên pt\(^{\left(1\right)}\) có 2 nghiệm
t\(_1\)=1; t\(_2\)=\(\dfrac{c}{a}\)=-4
khi t\(_1\)=1 thì x\(^2\)=1 ⇒x=\(^+_-\)1
khi t\(_2\)=-4 thì x\(^2\)=-4 ⇒ x=\(^+_-\)2
vậy pt đã cho có 4 nghiệm x=\(^+_-\)1; x=\(^+_-\)2
d)3x\(^2\)+6x-9=0
thấy có a+b+c= 3+6+(-9)=0 nên pt có 2 nghiệm
x\(_1\)=1; x\(_2\)=\(\dfrac{c}{a}=\dfrac{-9}{3}=-3\)
e. \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\) (ĐK: x#5; x#2 )
⇔\(\dfrac{\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}+\dfrac{3\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}\)=\(\dfrac{6\left(x-5\right)}{\left(x-5\right)\left(2-x\right)}\)
⇒2x - x\(^2\) + 4 - 2x + 6x - 6x\(^2\) + 12 - 6x - 6x +30 = 0
⇔-7x\(^2\) - 6x + 46=0
Δ'=b'\(^2\)-ac = (-3)\(^2\) - (-7)\(\times\)46= 9+53 = 62>0
\(\sqrt{\Delta'}=\sqrt{62}\)
vậy pt có 2 nghiệm phân biệt
x\(_1\)=\(\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{3+\sqrt{62}}{-7}\)
x\(_2\)=\(\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{3-\sqrt{62}}{-7}\)
vậy pt đã cho có 2 nghiệm x\(_1\)=.....;x\(_2\)=......
câu g làm tương tự câu c
Bài 2: Tìm x, biết :
a) 3x^2-15x=0
b) 2x(x-3)+3-x=0
c) x^3-3x^2-6x-6+8=0
d) (x-2)^2-16(5-2x)^2
cảm ơn trước ạ
\(a,\Rightarrow3x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\\ b,\Rightarrow\left(x-3\right)\left(2x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\\ c,Đề.sai\\ d,Sửa:\left(x-2\right)^2-16\left(5-2x\right)^2=0\\ \Rightarrow\left[x-2-4\left(5-2x\right)\right]\left[x-2+4\left(5-2x\right)\right]=0\\ \Rightarrow\left(x-2-20+8x\right)\left(x-2+20-8x\right)=0\\ \Rightarrow\left(9x-22\right)\left(18-7x\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{22}{9}\\x=\dfrac{18}{7}\end{matrix}\right.\)