cho tam giac abc vuong tai a co duong cao ah tren cach bc lay d sao cho bd =ba
Cho tam giac ABC vuong tai A. Duong cao AH. Tren canh BC lay diem E sao cho BE=BA. Ve EK vuong goc AC. Cm AK=AH
\(\widehat{KAE}+\widehat{BAE}=90^0\)
\(\widehat{HAE}+\widehat{BEA}=90^0\)
mà \(\widehat{BAE}=\widehat{BEA}\)
nên \(\widehat{KAE}=\widehat{HAE}\)
Xét ΔKAE vuông tại K và ΔHAE vuông tại H có
AE chung
\(\widehat{KAE}=\widehat{HAE}\)
Do đó: ΔKAE=ΔHAE
Suy ra: AK=AH
cho tam giac abc a=90 ke ah_|_ bc tai h tren duong thang vuong goc voi bc tai b lay diem d sao cho bd =ah
a)tam giac ahb = tam giac dbh b)ab//dh
cho tam giac ABC co AB = 3cm AC = 4cm BC =5cm ke duong thang AH
chung minh tam giac ABC vuong
tren canh BC lay D sao cho BD=BA tren canh AC lay diem E sao cho AE=AH
goi F la giao diem cua DE va AH chung minh
DE vuong AC
tam giac ACF can
BC+AH> AC+AB
cho tam giac ABC vuong tai A . Ve duong cao AH, tren AH lay D, tren tia doi cua HA lay E sao cho HE bang AD. Duong thang vuong goc voi AH tai D cat AC tai F .CMR: EB vuong goc voi EF
cho tam giac ABC vuong tai A.Duong cao AH tren canh BC lay diem D sao cho BD=BA duong vuong goc voi BC tai A cat Ac tai E.
a,So sanh AD va DE
b,Chung minh:AD la phan giac goc HAC
c,Duong phan giac ngoai dinh C cat duong thang BE o K tinh goc BAK
d.Chứng minh AB+AC<BC+AAH va DH<DC
cho tam giac ABC vuong tai A co AB = 8cm, BC = 10cm a) Tinh AC, b) tren tia AC lay diem D sao cho AD = AC. Ve AE vuong goc BD tai E, ve AF vuong goc BC tai F. Chung minh tam giac ABE = tam giac ABF, c) Ve duong thang vuong goc BD tai D duong thang vuong goc BC tai C. Hai duong thang nay cat nhau ta M. Chung minh: tam giac MDC can, D) Chung minh: B,A, M thang hang
a, dễ tự làm
b, xét tam giác CAB và tam giác DAB có : AB chung
AC = AD (gt)
góc CAB = góc DAB = 90
=> tam giác CAB = tam giác DAB (2cgv)
=> góc CBA = góc DBA (đn)
xét tam giác AFB và tam giác AEB có : AB chung
góc AFB = góc AEB = 90
=> tam giác AFB = tam giác AEB (ch - gn)
cho tam giac abc vuong tai a co bd la tia phan giac cua abc d thuoc ac lay diem e tren bc sao cho be=ba chung minh de vuong bc
cho tam giac ABC vuông tai A Ve duong cao AH Tren canh BC lay diem D sao cho BD=BA
a) c/m goc BAD=góc ADB
cho tam giac abc vuong tai a co goc b bang 60 do tren canh bc lay diem h sao cho hb=ab duong vuong goc voi bc tai h cat ac tai d
a/ cm bd la tia phan giac cua goc adc
b/ chung to tam giac bdc can