Cho phân số A = \(\dfrac{n^2+4}{n+5}\)
Hỏi có bao nhiêu số tự nhiên thỏa mãn 1\(\le\)n\(\le\)2020 sao cho A là phân số chưa tối giản?
Nguyễn Việt Lâm; Nguyễn Lê Phước Thịnh giúp vs!
Gọi \(d=ƯC\left(n^2+4;n+5\right)\)
\(\Rightarrow n\left(n+5\right)-\left(n^2+4\right)⋮d\)
\(\Rightarrow5n-4⋮d\)
\(\Rightarrow5\left(n+5\right)-29⋮d\)
\(\Rightarrow29⋮d\)
\(\Rightarrow d=\left\{1;29\right\}\)
Phân số chưa tối giản \(\Leftrightarrow d\ne1\Rightarrow d=29\)
\(\Rightarrow n+5=29k\Rightarrow n=29k-5\)
\(1\le29k-5\le2020\Rightarrow\dfrac{6}{29}\le k\le\dfrac{2025}{29}\)
\(\Leftrightarrow1\le k\le69\Rightarrow\) có 69 số tự nhiên thỏa mãn
Có bao nhiêu số tự nhiên n nằm giữa 1 và 2000 sao cho phân số (n2+7) / (n+4) ko phải là phân số tối giản ?
ta có : 1 < n < 2000
xét (n^2+7)/(n+4) = (n^2-16+23)/(n+4) = n-4+23/(n+4)
để (n^2+7)/(n+4) ko là phân số tối giản thì 23/(n+4) phải ko là phân số tối giản
suy ra n+4 phải chia hết cho 23
suy ra n = 23*k-4 (k thuộc N*)
thay vào phương trình đầu ta có:
1 < 23*k-4 < 2000 tương đương
5 < 23*k < 2004 tương đương
5/23 < k < 2004/23 tương đương
0,23 < k < 87,13
lấy giá trị N* lớn nhất của k ta có số số tự nhiên n là 87
Cho m và n là các số tự nhiên thỏa mãn phân số \(\frac{m}{n}\) tối giản và phân số \(\frac{4.m+3.n}{3.m+2.n}\)không tối giản. Tìm ƯCLN của 4m+3n và 5m +2n
có bao nhiêu số tự nhiên thỏa mãn:\(\frac{a+41}{b-4}\)
để phân số trên là phân số tối giản
tìm tất cả các số tự nhiên n sao cho với mọi số tự nhiên n thỏa mãn 1<n<m/2 thì (m-n)/n không phải phân số tối giản
Cho phân số \(A=\frac{n^2+4}{n^2+5}\), hỏi có bao nhiếu số tự nhiên n thỏa mãn \(1\le n\le2016\)sao cho phân số \(A\)chưa tối giản
sửa \(n^2+5\)thành \(n+5\)nha các bạn
Gọi ƯCLN( n^2 + 4 ; n^2 + 5 ) = d ( d là số tự nhiên )
Suy ra : \(n^2+4⋮d\)
\(n^2+5⋮d\)
Nên \(\left(n^2+5\right)-\left(n^2+4\right)=1\)
\(\Rightarrow1⋮d\)\(\Leftrightarrow d=\left\{1;-1\right\}\)
Vậy phân số trên luôn là phân số tối giản nên không có n thỏa mãn A không tối giản
Cho phân số \(\frac{n^2+4}{5}\).Hỏi có bao nhiêu số tự nhiên n thoả mãn 1\(\subseteq\)n\(\subseteq\)2009 sao cho A là phân số chưa tối giản
cho m và n là các số nguyên dương thỏa mãn m/n là phân số tối giản và phân số 4m+3n/5m+2n không tối giản
1)Số cặp ( x;y ) nguyên thỏa mãn (x^2-2)^6+y^4=1 là....
2)Số các phân số a/b thỏa mãn a,b (thuộc) n a/b = 37/40; a+b < 1000 và a+b (thuộc) B(33) là....
3)Số tự nhiên n nhỏ nhất để 1/n+3 ; 2/n+4 ; 3/n+5 ;......; 98/n+100 =
4)Cho tam giac ABC, M là trung điểm của AB. Trên AC lấy điểm N sao cho CN=1/4AC. Diện tích tứ giác BMNC bằng... diện tích tam giác AMN
5)Số tự nhiên nhỏ nhất có 5 chữ số thỏa mãn phân số (2n+7)/(5n+2)
6)Tìm phân số bằng phân số a/ab, biết rằng phân số đó bằng phân số 1/6a.
7)Cho phân số a/b khác 0 tối giản. Biết rằng nếu cộng tử vào tử, cộng tử vào mẫu thì được phân số bằng nửa phân số đã cho. Tính a-b
8) Cho x,y nguyên thỏa mãn 2/(x^2+y^2+3); 3/(x^2+y^2+4);...; 18/(x^2+y^2+19) là các phân số tối giản. Tổng của x^2 và y^2 nhỏ nhất có thể là...
9)Có ... STN n thỏa mãn giá trị phân số (n+10)/(2n-8) nguyên
10)Cho phân số A= (23+22+21+...+13)/(11+10+9+...+1). Có tất cả ... cách xóa một số hạng ở tử và một số hạng ở mẫu của A để được một phân sô mới có giá trị bằng A