Giải phương trình bậc hai dùng công thức nghiệm:
a)\(2x^2-5x+1=0\)
b)\(4x^2+4x+1=0\)
c)\(5x^2-x+2=0\)
d)\(-3x^2+2x+8=0\)
Dùng công thức nghiệm,giải các phương trình sau:
a. \(x^2+3x+4=0\)
b. \(4x^2-4x+1=0\)
c. \(x^2-5x-6=0\)
d. \(3x^2+12x-2=0\)
e. \(x^2+2\sqrt{5}x-1=0\)
f. \(2x^2-4\sqrt{2}x+2=0\)
Giải bất phương trình bậc hai :
Loại 1) Khi phương trình bậc hai có 2 nghiệm phân biệt:
a) 2x^2+x-3>0
b x^2+3x-1>0 c) 4x^2-1<'or'=0 d)x^2+5x+6>'or'=0
e) x^2+3x+2<'or'=0 f)x^2+4x+3<0
giải các phương trình sau
a.3(x-1)=5x+8
b.9x^2-1=(3x+1)(4x+1)
c.(2x+1)^2=(x-1)^2
d.2x^3+3x^3-5x=0
e.x^2+2x-15=0
a) \(3\left(x-1\right)=5x+8\)
\(\Leftrightarrow\)\(3x-3=5x+8\)
\(\Leftrightarrow\)\(2x=-11\)
\(\Leftrightarrow\)\(x=-5,5\)
Vậy...
b) \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\)\(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(-x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
Vậy..
c) \(\left(2x+1\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow\)\(\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow\)\(3x\left(x+2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy...
d) \(2x^3+3x^3-5x=0\)
\(\Leftrightarrow\)\(5x^3-5x=0\)
\(\Leftrightarrow\)\(5x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(x=0\)hoặc \(x-1=0\)hoặc \(x+1=0\)
\(\Leftrightarrow\)\(x=0\) hoặc \(x=1\) hoặc \(x=-1\)
Vậy...
p/s: chỗ "hoặc" bn đưa về kí hiệu "[" cho mk nhé
e) \(x^2+2x-15=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy...
a,\(\Leftrightarrow3x-3=5x+8\)
\(\Leftrightarrow2x=-11\)
\(\Leftrightarrow x=-\frac{11}{2}\)
b,\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x+1\right)\left(4x+1\right)\)=0
\(\Leftrightarrow\left(3x+1\right)\left(3x+1-4x-1\right)\)=0
\(\Leftrightarrow\left(3x+1\right)\left(-x\right)\)=0
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=0\end{cases}}\)
c\(\Leftrightarrow4x^2+4x+1=x^2-2x+1\)
\(\Leftrightarrow3x^2+6x=0\)
\(\Leftrightarrow3x\left(x+2\right)\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
d,có lẽ bạn viết sai đề phải ko
2x3+3x2-5x=0
\(\Leftrightarrow x\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow x\left(2x^2-2x+5x-5\right)\Leftrightarrow x\left(x-1\right)\left(2x+5\right)\)
\(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}va.2x+5=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=0.và.x=1\end{cases}}\)
e,\(x^2+2x-15=0\)
\(\Leftrightarrow x^2-3x+5x-15\)=0
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)\)=0
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
Giải các phương trình tích sau:
1.a)(3x – 2)(4x + 5) = 0 b) (2,3x – 6,9)(0,1x + 2) = 0
c)(4x + 2)(x2 + 1) = 0 d) (2x + 7)(x – 5)(5x + 1) = 0
2. a)(3x + 2)(x2 – 1) = (9x2 – 4)(x + 1)
b)x(x + 3)(x – 3) – (x + 2)(x2 – 2x + 4) = 0
c)2x(x – 3) + 5(x – 3) = 0 d)(3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
3.a)(2x – 5)2 – (x + 2)2 = 0 b)(3x2 + 10x – 8)2 = (5x2 – 2x + 10)2
c)(x2 – 2x + 1) – 4 = 0 d)4x2 + 4x + 1 = x2
4. a) 3x2 + 2x – 1 = 0 b) x2 – 5x + 6 = 0
c) x2 – 3x + 2 = 0 d) 2x2 – 6x + 1 = 0
e) 4x2 – 12x + 5 = 0 f) 2x2 + 5x + 3 = 0
Bài 1:
a) (3x - 2)(4x + 5) = 0
<=> 3x - 2 = 0 hoặc 4x + 5 = 0
<=> 3x = 2 hoặc 4x = -5
<=> x = 2/3 hoặc x = -5/4
b) (2,3x - 6,9)(0,1x + 2) = 0
<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
<=> 2,3x = 6,9 hoặc 0,1x = -2
<=> x = 3 hoặc x = -20
c) (4x + 2)(x^2 + 1) = 0
<=> 4x + 2 = 0 hoặc x^2 + 1 # 0
<=> 4x = -2
<=> x = -2/4 = -1/2
d) (2x + 7)(x - 5)(5x + 1) = 0
<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
<=> 2x = -7 hoặc x = 5 hoặc 5x = -1
<=> x = -7/2 hoặc x = 5 hoặc x = -1/5
bài 2:
a, (3x+2)(x^2-1)=(9x^2-4)(x+1)
(3x+2)(x-1)(x+1)=(3x-2)(3x+2)(x+1)
(3x+2)(x-1)(x+1)-(3x-2)(3x+2)(x+1)=0
(3x+2)(x+1)(1-2x)=0
b, x(x+3)(x-3)-(x-2)(x^2-2x+4)=0
x(x^2-9)-(x^3+8)=0
x^3-9x-x^3-8=0
-9x-8=0
tự tìm x nha
Giải các phương trình sau: a) 5x+9 = 2x b) (x+1).(4x-3)= (2x+5)(x+1) c) x/x-2 +x/x+2 = 4x/ x²-4 d) 11x-9= 5x+3 e) (2x+3)(3x-4) =0
c) \(\dfrac{x}{x-2}+\dfrac{x}{x+2}=\dfrac{4x}{x^2-4}.ĐKXĐ:x\ne2;-2\)
<=>\(\dfrac{x\left(x+2\right)}{x^2-4}+\dfrac{x\left(x-2\right)}{x^2-4}=\dfrac{4x}{x^2-4}\)
<=>x2+2x+x2-2x=4x
<=>2x2-4x=0
<=>2x(x-2)=0
<=>\(\left[{}\begin{matrix}2x=0< =>x=0\\x-2=0< =>x=2\left(loại\right)\end{matrix}\right.\)
Vậy pt trên có nghiệm là S={0}
d) 11x-9=5x+3
<=>11x-5x=9+3
<=>6x=12
<=>x=2
Vậy pt trên có nghiệm là S={2}
e) (2x+3)(3x-4) =0
<=> \(\left[{}\begin{matrix}2x+3=0< =>x=\dfrac{-3}{2}\\3x-4=0< =>x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={\(\dfrac{-3}{2};\dfrac{4}{3}\)}
a) 5x+9 =2x
<=> 5x-2x=9
<=> 3x=9
<=> x=3
Vậy pt trên có nghiệm là S={3}
b) (x+1)(4x-3)=(2x+5)(x+1)
<=> (x+1)(4x-3)-(2x+5)(x+1)=0
<=>(x+1)(2x-8)=0
<=>\(\left[{}\begin{matrix}x+1=0< =>x=-1\\2x-8=0< =>2x=8< =>x=4\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={-1;4}
c)
<=>
<=>x2+2x+x2-2x=4x
<=>2x2-4x=0
<=>2x(x-2)=0
<=>
Vậy pt trên có nghiệm là S={0}
d) 11x-9=5x+3
<=>11x-5x=9+3
<=>6x=12
<=>x=2
Vậy pt trên có nghiệm là S={2}
e) (2x+3)(3x-4) =0
<=>
Vậy pt trên có tập nghiệm là S={}
Bài 1 : giải những các phương trình sau A. X² - 2x - 3 = 0 B. X² - 3x = 0 C. X² - 4x - 5 = 0 D. 5x² + 2x - 7 = 0 E. 2x² - 8 = 0 G. 3x² -7x + 1 = 0 H. X² - 4x + 1 = 0
a: =>(x-3)(x+1)=0
=>x=3 hoặc x=-1
b: =>x(x-3)=0
=>x=0 hoặc x=3
c: =>(x-5)(x+1)=0
=>x=5 hoặc x=-1
d: =>5x^2+7x-5x-7=0
=>(5x+7)(x-1)=0
=>x=1 hoặc x=-7/5
e: =>x^2-4=0
=>x=2 hoặc x=-4
h: =>x^2-4x+4-3=0
=>(x-2)^2=3
=>\(x=2\pm\sqrt{3}\)
Bài 1: Giải các phương trình: a)(5x^ 2 -45).( 4x-1 5 - 2x+1 3 )=0 b) (x^ 2 -2x+6).(2x-3)=4x^ 2 -9 d) 3 5x-1 + 2 3-5x = 4 (1-5x).(5x-3) c) (2x + 19)/(5x ^ 2 - 5) - 17/(x ^ 2 - 1) = 3/(1 - x) e) 3/(2x + 1) = 6/(2x + 3) + 8/(4x ^ 2 + 8x + 3) (x^ 2 -3x+2).(x^ 2 -9x+20)=40 (2x + 5)/95 + (2x + 6)/94 + (2x + 7)/93 = (2x + 93)/7 + (2x + 94)/6 + (2x + 95)/5 Bài 2: Giải các phương trình sau: g) a) (x + 2) ^ 2 + |5 - 2x| = x(x + 5) + 5 - 2x b) (x - 1) ^ 2 + |x + 21| - x ^ 2 - 13 = 0 d) |3x + 2| + |1 - 2x| = 5 - |x| c) |5 - 2x| = |1 - x| Bài 3: Cho biểu thức A = ((x + 2)/(x + 3) - 5/(x ^ 2 + x - 6) + 1/(2 - x)) / ((x ^ 2 - 5x + 4)/(x ^ 2 - 4)) a) Rút gọn A. b) Tim x de A = 3/2 c) Tìm giá trị nguyên c dot u a* d hat e A có giá trị nguyên. B = ((2x)/(2x ^ 2 - 5x + 3) - 5/(2x - 3)) / (3 + 2/(1 - x)) Bài 4: Cho biểu thức a) Rút gọn B. b) Tim* d tilde e B>0 . c) Tim* d hat e B= 1 6-x^ 2 . Bài 5: Cho biểu thức H = (2/(1 + 2x) + (4x ^ 2)/(4x ^ 2 - 1) - 1/(1 - 2x)) / (1/(2x - 1) - 1/(2x + 1)) a) Rút gọn H. b) Tìm giá trị nhỏ nhất của H. c)Tim* d vec e bi vec e u thic H= 3 2
Bài 1: Giải các phương trình sau:
a) 3x – 15 = 0 b) 4x + 20 = 0 c) -5x – 20 = 0 d) 3x + 1 = 7x – 11
e) 3 + 2x = 2(x + 1) g
a: 3x-15=0
nên 3x=15
hay x=5
b: 4x+20=0
nên 4x=-20
hay x=-5
c: -5x-20=0
nên -5x=20
hay x=-4