So sánh: \(\sqrt{2013}+\sqrt{2015}\) và \(2\sqrt{2014}\)
So sánh
M=\(\sqrt{2015}-\sqrt{2014}vàN=\sqrt{2014}-\sqrt{2013}\)
Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}\le\sqrt{\frac{a+b}{2}}\) :
Xét : \(N-M=2\sqrt{2014}-\left(\sqrt{2015}+\sqrt{2013}\right)\)
Theo bđt trên thì \(\frac{\sqrt{2013}+\sqrt{2015}}{2}\le\sqrt{\frac{2013+2015}{2}}\Leftrightarrow\sqrt{2013}+\sqrt{2015}\le2\sqrt{2014}\)
\(\Rightarrow N-M>0\Rightarrow N>M\)
so sánh \(\sqrt{2013}-\sqrt{2014}va\sqrt{2014}-\sqrt{2015}\)
So sánh 2 số:
\(a)\sqrt{2014}-\sqrt{2013};B=\sqrt{2015}-\sqrt{2014}\\ b)E=\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}};F=\sqrt{2014}+\sqrt{2015}\)
so sánh : a) \(\sqrt{2014}-\sqrt{2013}và\sqrt{2015}-\sqrt{2014}\)
b) \(\sqrt{3}+\sqrt{5}và\sqrt{7}+\sqrt{2}\)
\(\sqrt{2015-\sqrt{2012}}\)so sánh với \(\sqrt{2014-\sqrt{2013}}\)
so sánh \(\sqrt{2015}-\sqrt{2014}\) và \(\sqrt{2016}-\sqrt{2015}\)
Ta có: \(\sqrt{2015}-\sqrt{2014}=\dfrac{2015-2014}{\sqrt{2015}+\sqrt{2014}}>\dfrac{2016-2015}{\sqrt{2016}+\sqrt{2015}}=\sqrt{2016}-\sqrt{2015}\)
Ta có: √2015−√2014=2015−2014√2015+√2014>2016−2015√2016+√2015=√2016−√2015
1.So sánh A = \(\sqrt{2014}+\sqrt{2015}+\sqrt{2016}\) và B = \(\sqrt{2011}+\sqrt{2013}+\sqrt{2021}\) mà không dùng máy tính và bảng số.
2.Giải phương trình : \(\sqrt{\left(x-2015\right)^{14}}+\sqrt{\left(x-2016\right)^{10}}=1\)
Bài tập:so sánh
a. \(2\sqrt{3}\) và \(3\sqrt{2}\)
b. \(2\sqrt{3}+1\)và 4
c.\(\sqrt{2015}-\sqrt{2014}\) và \(\sqrt{2014}-\sqrt{2013}\)
a) Ta có: \(2\sqrt{3}=\sqrt{4\cdot3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{9\cdot2}=\sqrt{18}\)
mà \(\sqrt{12}< \sqrt{18}\)(vì 12<18)
nên \(2\sqrt{3}< 3\sqrt{2}\)
b) Ta có: \(\left(2\sqrt{3}+1\right)^2=8+4\sqrt{3}+1=9+4\sqrt{3}\)
\(4^2=16=9+7\)
mà \(4\sqrt{3}< 7\left(\sqrt{48}< \sqrt{49}\right)\)
nên \(\left(2\sqrt{3}+1\right)^2< 4^2\)
hay \(2\sqrt{3}+1< 4\)
c) Ta có: \(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)
\(\sqrt{2014}-\sqrt{2013}=\dfrac{1}{\sqrt{2014}+\sqrt{2013}}\)
Ta có: \(\sqrt{2015}+\sqrt{2014}>\sqrt{2013}+\sqrt{2014}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2015}+\sqrt{2014}}< \dfrac{1}{\sqrt{2013}+\sqrt{2014}}\)
hay \(\sqrt{2015}-\sqrt{2014}< \sqrt{2014}-\sqrt{2013}\)
\(a\))Ta có:\(2\sqrt{3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{18}\)
Vì \(\sqrt{12}< \sqrt{18}\)
⇒\(2\sqrt{3}< 3\sqrt{2}\)
\(b\))Ta có:\(2\sqrt{3}+1=\sqrt{12}+1\)
\(4=3+1=\sqrt{9}+1\)
Vì \(\sqrt{12}+1>\sqrt{9}+1\)
⇒\(2\sqrt{3}+1>4\)
\(\sqrt{2015}\)\(-\sqrt{2012}\)so sánh với \(\sqrt{2014-}\)
\(\sqrt{2013}\)