Tìm x :
\(x\times\frac{1}{4}+x\times\frac{1}{5}+x\times2=19,6\)
1/ Tìm x :
\(\frac{x\times2+5}{x+5}=\frac{6}{4}\)
2/ Tính nhanh :
a) \(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+\frac{4}{13\times17}+\frac{4}{17\times21}\)
b) \(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times.......\times\left(1-\frac{1}{2017}\right)\)
c) \(A=2000-5-5-5-.......-5\)( có 200 số 5 )
2/
a) \(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(=\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{17}-\frac{1}{21}\right)\)
\(=1-\frac{1}{21}=\frac{20}{21}\)
b) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot..\cdot\frac{2016}{2017}\)
\(=\frac{1}{2017}\)
c) \(A=2000-5-5-5-..-5\)(có 200 số 5)
\(A=2000-\left(5\cdot200\right)\)
\(A=2000-1000\)
\(A=1000\)
bài 1 tìm x
\(x-25\%x=\frac{1}{2}\)
bài 2 tính hợp lý
\(a,(\frac{-4}{5}+\frac{4}{3})+(\frac{-5}{4}+\frac{14}{5})-\frac{7}{3}\) \(b,\frac{8}{3}\times\frac{2}{5}\times\frac{3}{10}\times10\times\frac{19}{92}\)\(c,\frac{-5}{7}\times\frac{2}{11}+\frac{-5}{7}\times\frac{9}{14}+1\frac{5}{7}\)
Bài 1: Tìm \( x \)
\[
x - \frac{25\%}{100}x = \frac{1}{2}
\]
Để giải phương trình này, trước hết chúng ta phải chuyển đổi phần trăm thành dạng thập phân:
\[
\frac{25\%}{100} = 0.25
\]
Phương trình ban đầu trở thành:
\[
x - 0.25x = \frac{1}{2}
\]
Tổng hợp các hạng tử giống nhau:
\[
1x - 0.25x = \frac{1}{2}
\]
\[
0.75x = \frac{1}{2}
\]
Giải phương trình ta được:
\[
x = \frac{\frac{1}{2}}{0.75} = \frac{2}{3}
\]
Vậy, \( x = \frac{2}{3} \)
Bài 2: Tính hợp lý
a) \[
\frac{5}{-4} + \frac{3}{4} + \frac{4}{-5} + \frac{14}{5} - \frac{7}{3}
\]
Chúng ta cần tìm một mẫu số chung cho tất cả các phân số. Mẫu số chung nhỏ nhất là 60.
\[
= \frac{75}{-60} + \frac{45}{60} + \frac{-48}{60} + \frac{168}{60} - \frac{140}{60}
\]
\[
= \frac{75 + 45 - 48 + 168 - 140}{60}
\]
\[
= \frac{100}{60} = \frac{5}{3}
\]
b) \[
\frac{8}{3} \times \frac{2}{5} \times \frac{3}{10} \times \frac{10}{92} \times \frac{19}{92}
\]
Tích của các phân số là:
\[
= \frac{8 \times 2 \times 3 \times 10 \times 19}{3 \times 5 \times 10 \times 92 \times 92}
\]
\[
= \frac{9120}{4131600} = \frac{57}{25825}
\]
c) \[
\frac{5}{7} \times \frac{2}{11} + \frac{5}{7} \times \frac{9}{14} + \frac{1}{5}
\]
Tích của các phân số là:
\[
= \frac{10}{77} + \frac{45}{98} + \frac{1}{5}
\]
\[
= \frac{980}{7546} + \frac{3485}{7546} + \frac{15092}{75460}
\]
\[
= \frac{2507}{7546}
\]
Tìm x biết:
\(\left(\left(4\times4+1\right)^{\sqrt{\frac{3}{2}\times2}}\right)\times x=\sqrt{6400}+\sqrt{6400}\times2\)
\(\left[\left(4.4+1\right)\sqrt{\frac{3}{2}.2}\right].x=\sqrt{6400}+\sqrt{6400}.2\)
\(\Rightarrow\left[17.\sqrt{3}\right].x=80+80.2\)
\(\Rightarrow17\sqrt{3}.x=240\)
\(\Rightarrow x=\frac{240}{17\sqrt{3}}\)
Tìm x biết :
\(\frac{10}{1\times2}+\frac{10}{2\times3}+...+\frac{10}{x\times\left(x+1\right)}=9\)
\(\Leftrightarrow10\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{x\times\left(x+1\right)}\right)=9\)
\(\Leftrightarrow\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=9\div10\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{9}{10}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{10}\)
\(\Rightarrow x+1=10\)
\(\Leftrightarrow x=9\)
Vậy x = 9
Tìm x \(\left(\frac{1}{1\times2\times3}+...+\frac{1}{8\times9\times10}\right)\times x=\frac{22}{45}\)
Ở link này có bài tham khảo nè bn :
http://olm.vn/hoi-dap/detail/42438427638.html
Với \(a\inℕ;a>0\), ta có:
\(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)
\(=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
Theo đề :
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{22}{45}\)
\(\Leftrightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right)x=\frac{44}{45}\)
\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{44}{45}\)
\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{90}\right)x=\frac{44}{45}\Leftrightarrow\frac{44}{90}x=\frac{44}{45}\Leftrightarrow x=\frac{44}{45}:\frac{44}{90}=\frac{90}{45}=2\)
Vậy \(x=2\)
Chúc bạn học tốt!
P/S: đây là 1 trong những dạng bài toán hay của lớp 6: tính toán trên dãy số. Để làm được dạng này thì mình có 2 quy tắc tổng quát như sau:
1)Khử liên tiếp
2)Đưa về những dãy số cơ bản đã biết cách tính (VD: 1+2+3+...; ...)
Tìm x:
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x\times\left(x+1\right)}=\frac{2015}{2016}\)
1-1/x+1=2015/2016
=>1/x+1=1-2015/2016=1/2016
=>x+1=2016=>x=2015
mình không ghi lại đề nha:
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
<=>\(1-\frac{1}{x+1}=\frac{2015}{2016}\)
<=>\(\frac{x}{x+1}=\frac{2015}{2016}\)
=>x=
Đến đó bạn tự giải tiếp ha
=>(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/x-1/x+1)=2015/2016
=>1/1-1/x+1=2015/2016
=>x/x+1=2015/2016
=>x=2015
\(2020^{2020}\times\left(7^{10}\times7^8-3\times2^4-2^{2020}\div2^{2020}\right)\)
Tìm x:
\(\frac{1}{2}\times x-\frac{3}{5}=\frac{-4}{5}\) B)\(\left(x-\frac{2}{3}\right)\div\frac{-3}{7}=\frac{-9}{14}\)
1/2.x-3/5=-4/5
1/2.x=-4/5+3/5
1/2.x=-1/5
x=-1/5:1/2
x=-2/5
kl:.....
câu đầu mik tính ra sốn to lắm
câu cuối mik tính ko chia hết nên chỉ làm đc câu giữa
Mk sửa đề nha :
20202020 x ( 710 : 78 - 3 x 24 - 22020 : 22020 )
= 20202020 x ( 72 - 48 - 20 )
= 20202020 x ( 49 - 48 - 1 )
= 20202020 x 0
= 0
Study well ! >_<
Mk sửa đề nha :
20202020 x ( 710 : 78 - 3 x 24 - 22020 : 22020 )
= 20202020 x ( 72 - 48 - 20 )
= 20202020 x ( 49 - 48 - 1 )
= 20202020 x 0
= 0
Study well ! >_<
Tập hợp các giá trị nguyên dương của x thỏa mản :\(\left(\right)\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}\left(\right)\times x<\frac{13}{7}\)có số phần tử là
Tìm x, biết: \(\frac{\left(1\times2+2\times3+3\times4+..........+98\times99\right)\times x}{26950}=\frac{51}{4}\div\frac{3}{2}\)