căn( x^2 - 3x + 2 ) + căn( x+3 ) = căn( x-2 ) + căn( x^2+2x-3)
tìm x
Giải các bài sau:
1) x^2-x-2 căn (1+16x)=2
2) x^2= căn (x^3-x^2)+ căn (x^2-x)
3) -x^2+2= căn (2-x)
4) 20- căn (3-2x)= |2x-3|
5) căn (x(x-2))+ căn(x(x+5))= căn (x(x-3))
6) 3x/căn(3x+10)= căn (3x+1)-1
Cảm ơn nhiều !
Giải các pt sau:
1)x- căn 2x-5=4
2)căn 2x² - 8x +4=x -2
3)căn x²+ x -12=8- x
4)căn x² - 3x -2= căn x -3
5)căn 2x + 1=2 + căn x - 3
6)căn x +2 căn x-1 -căn x - 2 căn x-1=-2
7) căn x-2 +căn x+3 =5
8) căn x² -4x +3 + x² -4x =-1
2: =>2x^2-8x+4=x^2-4x+4 và x>=2
=>x^2-4x=0 và x>=2
=>x=4
3: \(\sqrt{x^2+x-12}=8-x\)
=>x<=8 và x^2+x-12=x^2-16x+64
=>x<=8 và x-12=-16x+64
=>17x=76 và x<=8
=>x=76/17
4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)
=>x^2-3x-2=x-3 và x>=3
=>x^2-4x+1=0 và x>=3
=>\(x=2+\sqrt{3}\)
6:
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)
=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)
=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)
=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)
=>-2*căn x-1=2
=>căn x-1=-1(loại)
=>PTVN
1) ĐK: \(x\ge\dfrac{5}{2}\)
pt <=> \(x-4=\sqrt{2x-5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=7
2) ĐK: \(2x^2-8x+4\ge0\)
pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=4
3) ĐK: \(x\ge3\)
pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)
4) ĐK: \(x\ge3\)
pt <=> \(x^2-3x-2=x-3\)
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{3}\left(n\right)\\x=2-\sqrt{3}\left(l\right)\end{matrix}\right.\)
a) ( x - 3)4 + ( x - 5)4 = 82
Đặt : x - 4 = a , ta có :
( a + 1)4 + ( a - 1)4 = 82
⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82
⇔ 2a4 + 12a2 - 80 = 0
⇔ 2( a4 + 6a2 - 40) = 0
⇔ a4 - 4a2 + 10a2 - 40 = 0
⇔ a2( a2 - 4) + 10( a2 - 4) = 0
⇔ ( a2 - 4)( a2 + 10) = 0
Do : a2 + 10 > 0
⇒ a2 - 4 = 0
⇔ a = + - 2
+) Với : a = 2 , ta có :
x - 4 = 2
⇔ x = 6
+) Với : a = -2 , ta có :
x - 4 = -2
⇔ x = 2
KL.....
b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8
⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680
⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680
Đặt : n2 - 9n + 19 = t , ta có :
( t - 1)( t + 1) = 1680
⇔ t2 - 1 = 1680
⇔ t2 - 412 = 0
⇔ ( t - 41)( t + 41) = 0
⇔ t = 41 hoặc t = - 41
+) Với : t = 41 , ta có :
n2 - 9n + 19 = 41
⇔ n2 - 9n - 22 = 0
⇔ n2 + 2n - 11n - 22 = 0
⇔ n( n + 2) - 11( n + 2) = 0
⇔ ( n + 2)( n - 11) = 0
⇔ n = - 2 hoặc n = 11
+) Với : t = -41 ( giải tương tự )
@Giáo Viên Hoc24.vn
@Giáo Viên Hoc24h
@Giáo Viên
@giáo viên chuyên
@Akai Haruma
Mọi người giúp mình giải câu này được không ạ . Mình cảm ơn nhiều
căn x^2-3x+2 + căn x+3 = căn x-2 + căn x^2+2x-3
căn x-1 + căn x^3+x^2+x+1 = 1 + căn x^4-1
căn 3x^2-7x+3 - căn x^2-2 = căn 3x^2-5x-1 - căn x^2-3x+4
2x^2 - 2(2 căn 2 - 2)x +3 = 2 căn 2
2x^2 - 6(căn 2 +1)x +8 căn 2 =4 căn 2
3x^2 - 2(2 căn 3 - 1)x + 3 = 2 căn 3
2x2-\(2\left(2\sqrt{2}-2\right)\)x+3=\(2\sqrt{2}\)
\(\Delta'=\left(2\sqrt{2}-2\right)^2-2\left(3-2\sqrt{2}\right)\)
\(=12-8\sqrt{2}-34+24\sqrt{2}\)
\(=-22+16\sqrt{2}>0\)
=> pt có 2 nghiệm gì đấy mình chưa học cái này
b c tương tự
a) Căn 2x^2-3x-11= căn x^2-1
b) Căn 2x^2-3x+1= căn x+5
c) (x-1).cẵnx^2-3x=0
d) x^2-4x-10-3 căn(x+2).(x-6)=0
e) Căn x+căn5-x+cănx.(5-x)=0
Giải pt:
1) Căn(x^2 - x + 2) + 1 = căn(10 - x^2 + x)
2) 4căn(x) - 2 căn(2 - x) + x - 4 căn( 2x - x^2) + 1 =0
3) x^2 + 3x - 1= (x+2) căn(x^2 + x - 1)
4) 3x^2 + 4x + 2 = 3(x+2) căn(x^2 - 1)
căn x+3 - 2 căn x = căn 2x+2 - căn 3x+1
\(\Leftrightarrow\sqrt{x+3}-2-2\sqrt{x}+2=\sqrt{2x+2}-2+2-\sqrt{3x+1}\)
=>\(\dfrac{x+3-4}{\sqrt{x+3}+2}-2\left(\sqrt{x}-1\right)=\dfrac{2x+2-4}{\sqrt{2x+2}+2}+\dfrac{4-3x-1}{2+\sqrt{3x+1}}\)
=>\(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x+3}+2}-2\left(\sqrt{x}-1\right)=\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{2x+2}+2}-\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2+\sqrt{3x+1}}\)
=>\(\left(\sqrt{x}-1\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x+3}+2}-2-\dfrac{2\sqrt{x}+2}{\sqrt{2x+2}+2}+\dfrac{3\sqrt{x}+3}{2+\sqrt{3x+1}}\right)=0\)
=>căn x-1=0
=>x=1
a) căn(x²+12)+5=3x+căn(x²+5)
b) 9(căn(4x+1)-căn(3x-2))=x+3
c) căn(2x+4)-2 căn(2x-1)=6x-4/căn(x²+4)
d) x²+9x+20=2 căn(3x+10)