Tìm số tự nhiên n , biết: \(2\times\left(3^{2010}-3\right)\div2+3=3^{5n+5}\)
Tìm số tự nhiên x biết:
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{1}{x\times\left(x+1\right)\div2}=\frac{2009}{2011}\)
Giúp mk nha làm ơn
\(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2011}:2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2011}\)
\(\Leftrightarrow x+1=2011\)
\(\Leftrightarrow x=2010\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.......+\frac{1}{x\times\left(x+1\right)\div2}=\frac{2009}{2011}\)
\(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.......+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(2\times\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(1-\frac{2}{x+1}=\frac{2009}{2011}\)
\(\frac{2}{x+1}=1-\frac{2009}{2011}\)
\(\frac{2}{x+1}=\frac{2}{2011}\)
\(x+1=2011\)
\(x=2011-1\)
\(\Rightarrow x=2010\)
1. a) Tìm n∈N để: \(\left(23-n\right)\left(23+n\right)\) là SCP.
b) Tìm 3 số lẻ liên tiếp mà tổng bình phương của chúng là 1 SCP.
2. a) Tìm nghiệm nguyên: \(x^{11}+y^{11}=11z\)
b) Tìm số tự nhiên n thỏa mãn: \(361\left(n^3+5n+1\right)=85\left(n^4+6n^2+n+5\right)\)
Tìm số tự nhiên n biết \(4^2.\left(3-4^3\right)+27=3.\left(4^n+9\right)-4^5\)
16.(-61)+27=3.(4^n+9)-1024
<=>-949=3.(4^n+9)-1024
<=>75=3.(4^n+9)
<=>4^n+9=25
<=>4^n=16
<=>n=2
Vậy n=2
CMR:Với mọi số tự nhiên n \(\ne\)0 ta đều có:
a.\(\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+...+\frac{1}{\left(3n-1\right)\times\left(3n+2\right)}=\frac{1}{6n+4}\)
b.\(\frac{5}{3\times7}+\frac{5}{7\times11}+\frac{5}{11\times15}+...+\frac{5}{\left(4n-1\right)\times\left(4n+3\right)}=\frac{5n}{4n+3}\)
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)
\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)
\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)
b)\(VT=\frac{5}{3\cdot7}+\frac{5}{7\cdot11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}\left[\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right]\)
\(=\frac{5}{4}\cdot\left[\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right]\)
\(=\frac{5}{4}\cdot\left[\frac{1}{3}-\frac{1}{4n+3}\right]=\frac{5}{4}\cdot\left[\frac{4n+3}{3\left(4n+3\right)}-\frac{3}{3\left(4n+3\right)}\right]\)
\(=\frac{5}{4}\cdot\left[\frac{4n+3-3}{12n+9}\right]\)\(=\frac{5}{4}\cdot\frac{4n}{12n+9}=\frac{5n}{12n+9}\)
A= \(-1,6\div\left(1+\frac{2}{3}\right)\)
B=\(1,4\times\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right)\div2\frac{1}{5}\)
\(A=-1,6:\left(1+\frac{2}{3}\right)\)
\(A=-\frac{16}{10}:\frac{5}{3}\)
\(A=-\frac{16.3}{10.5}=-\frac{48}{50}=-\frac{24}{25}\)
\(B=1,4\times\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)
\(B=\frac{14}{10}\times\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):\frac{11}{5}\)
\(B=\frac{2.7.3.5}{2.5.7.7}-\left(\frac{12+10}{15}\right):\frac{11}{5}\)
\(B=\frac{3}{7}-\frac{22}{15}:\frac{11}{5}\)
\(B=\frac{3}{7}-\frac{22}{15}\times\frac{5}{11}=\frac{3}{7}-\frac{2.11.5}{3.5.11}\)
\(B=\frac{3}{7}-\frac{2}{3}=\frac{9-14}{21}=-\frac{5}{21}\)
Ủng hộ mk nha !!! ^_^
Tìm số tự nhiên n biết rằng
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}\)=\(\frac{2010}{2011}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{2}{n\left(n+1\right)}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{n\left(n+1\right)}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{n\left(n+1\right)}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{2010}{2011}\)
\(\Leftrightarrow n=4021\).
\(2020^{2020}\times\left(7^{10}\times7^8-3\times2^4-2^{2020}\div2^{2020}\right)\)
Tìm x:
\(\frac{1}{2}\times x-\frac{3}{5}=\frac{-4}{5}\) B)\(\left(x-\frac{2}{3}\right)\div\frac{-3}{7}=\frac{-9}{14}\)
1/2.x-3/5=-4/5
1/2.x=-4/5+3/5
1/2.x=-1/5
x=-1/5:1/2
x=-2/5
kl:.....
câu đầu mik tính ra sốn to lắm
câu cuối mik tính ko chia hết nên chỉ làm đc câu giữa
Mk sửa đề nha :
20202020 x ( 710 : 78 - 3 x 24 - 22020 : 22020 )
= 20202020 x ( 72 - 48 - 20 )
= 20202020 x ( 49 - 48 - 1 )
= 20202020 x 0
= 0
Study well ! >_<
Mk sửa đề nha :
20202020 x ( 710 : 78 - 3 x 24 - 22020 : 22020 )
= 20202020 x ( 72 - 48 - 20 )
= 20202020 x ( 49 - 48 - 1 )
= 20202020 x 0
= 0
Study well ! >_<
1/ Tìm số tự nhiên nhỏ nhất có 3 chữ số sao cho chia cho 11 dư 5 ; chia cho 13 dư 7
2/ Chứng minh rằng : \(10^n+5^3⋮9\)
3/ Tìm x, y \(\in N\) biết : \(\left(x+1\right)\left(2y-5\right):143\)
Bài 2:
10^n có tổng các chữ số là 1
5^3 có tổng các chữ số là 8
=>10^n+5^3 có tổng các chữ số là 9
=>10^n+5^3 chia hết cho 9
a)Chứng tỏ 5n + 3/ 7n+4 là phân số tối giản với n là số tự nhiên
b)Tìm số tự nhiên a,b biết : a/2-3/b=5/6