Bài 11 Trục căn thức ở mẫu
a) \(\frac{\sqrt{2}-\sqrt{3}}{2\sqrt{3}}\)
b)\(\frac{x+a\sqrt{x}}{a\sqrt{x}}\)
c)\(\frac{x-y}{\sqrt{x}-\sqrt{y}}\)
d)\(\frac{x}{2\sqrt{x}-3\sqrt{y}}\)
2.trục căn thức ở mẫu sau:
a\(\frac{2xy}{2\sqrt{x}+3\sqrt{y}}\)
b\(\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}}\)
c\(\frac{2}{\sqrt{3}+1}\)
d\(\frac{6}{2\sqrt{3}+\sqrt{2}}\)
\(a,\frac{2xy}{2\sqrt{x}+3\sqrt{y}}=\frac{2xy.\left(2\sqrt{x}-3\sqrt{y}\right)}{\left(2\sqrt{x}+3\sqrt{y}\right)\left(2\sqrt{x}-3\sqrt{y}\right)}=\frac{4x\sqrt{x}y-6xy\sqrt{y}}{2x-3y}\)
\(b,\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\sqrt{x}}{2\sqrt{x}\sqrt{x}}=\frac{x+\sqrt{xy}}{2x}\)
\(c,\frac{2}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{2.\left(\sqrt{3}-1\right)}{2}=\sqrt{3}-1\)
\(d,\frac{6}{2\sqrt{3}+\sqrt{2}}=\frac{6\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}=\frac{6\left(2\sqrt{3}-\sqrt{2}\right)}{10}=\frac{6\sqrt{3}-3\sqrt{2}}{5}\)
Trục căn thức ở mẫu:
a,\(\frac{1}{\sqrt{2}-1}\)
b,\(\frac{2}{\sqrt{3}+1}\)
c,\(\frac{5}{\sqrt{7}-\sqrt{2}}\)
d,\(\frac{6}{2\sqrt{3}+\sqrt{2}}\)
e,\(\frac{1}{2\sqrt{a}+1}\)
g,\(\frac{2xy}{2\sqrt{x}+3\sqrt{y}}\)
h,\(\frac{x\sqrt{x}-1}{\sqrt{x}-1}\)
i,\(\frac{a-9b}{\sqrt{a}-3\sqrt{b}}\)
k,\(\frac{15-2\sqrt{5}}{3\sqrt{15}-2\sqrt{3}}\)
trục căn thức ở mẫu :
a,\(\frac{3}{\sqrt{5}};\frac{2\sqrt{3}}{\sqrt{2}};\frac{a}{\sqrt{b}};\frac{x+1}{\sqrt{x^2-1}}\)
b,\(\frac{1}{\sqrt{3}+\sqrt{2}};\frac{2}{2-\sqrt{3}};\frac{\sqrt{2}+1}{\sqrt{2}-1};\frac{3\sqrt{2}}{\sqrt{3}+1}\)
c,\(\frac{1}{1+\sqrt{2}+\sqrt{3}}\)
d,\(\frac{1}{\sqrt{2\sqrt{3}-\sqrt{2}}.\sqrt{2}.\sqrt{\sqrt{2}+\sqrt{3}}}\)
a) \(\frac{3}{\sqrt{5}}=\frac{3\sqrt{5}}{\sqrt{5}.\sqrt{5}}=\frac{3\sqrt{5}}{5}\)
\(\frac{2\sqrt{3}}{\sqrt{2}}=\frac{2\sqrt{3}.\sqrt{2}}{\sqrt{2}.\sqrt{2}}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)
\(\frac{a}{\sqrt{b}}=\frac{a\sqrt{b}}{\sqrt{b}.\sqrt{b}}=\frac{a\sqrt{b}}{b}\)
\(\frac{x+1}{\sqrt{x^2-1}}=\frac{\left(x+1\right)\left(\sqrt{x^2-1}\right)}{\left(\sqrt{x^2-1}\right)\left(\sqrt{x^2-1}\right)}\) = \(\frac{\left(\sqrt{x^2-1}\right)\left(x+1\right)}{x^2-1}\)
câu c chắc là như này
\(\frac{1}{1+\sqrt{2}+\sqrt{3}}=1+\frac{1}{\sqrt{2}+\sqrt{3}}\) = \(1+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}\)
= \(1+\frac{\sqrt{2}-\sqrt{3}}{2-3}=1+\frac{\sqrt{2}-\sqrt{3}}{-1}\) = \(1-\sqrt{2}+\sqrt{3}\)
bài 1) rút gọn
1) 5√\(\frac{1}{5}\) 2)\(\frac{12}{5}\)√\(\frac{5}{4}\) 3)\(\frac{30}{5\sqrt{6}}\) 4) \(\frac{20}{2\sqrt{5}}\) 5)\(\frac{2-\sqrt{2}}{\sqrt{2}}\) 6) \(\frac{11+\sqrt{11}}{1+\sqrt{ }11}\) 7) \(\frac{\sqrt{21-\sqrt{7}}}{1-\sqrt{3}}\) 8)\(\frac{\sqrt{2+\sqrt{3}}}{2+\sqrt{6}}\) 9)\(\frac{\sqrt{10-\sqrt{2}}}{\sqrt{5-}1}\) 10)\(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt[]{2}}\)
bài 2) với các biểu thức đã cho là có nghĩa và rút gọn
1)\(\frac{x-\sqrt{x}}{\sqrt{x}-1}\) 2)\(\frac{x\sqrt{x}-2x}{2-\sqrt{x}}\) 3) \(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\) 4) \(\frac{a\sqrt{b}-\sqrt{a}}{\sqrt{b}-b\sqrt{a}}\) 5) \(\frac{a-1}{\sqrt{a}+1}\) 6) \(\frac{4-x}{2\sqrt{x}-x}\) 7)\(\frac{a+1+2\sqrt{a}}{1+\sqrt{a}}\) 8)\(\frac{3\sqrt{x}-x}{3+2\sqrt{3x}-x}\) 9)\(\frac{y+12-4\sqrt{3y}}{y-12}\) 10)\(\frac{4\sqrt{x}-x-4}{x-4}\) 11)\(\frac{x+y-2\sqrt{xy}}{x\sqrt{y}-y\sqrt{x}}\)
Trục căn thức ở mẫu
a)\(\frac{\sqrt{3}-\sqrt{2}}{\sqrt{5}}\) b)\(\frac{2\sqrt{5}}{\sqrt{3}}\) c)\(\frac{1}{2\sqrt{32}}\) d)\(\frac{x+\sqrt{y}}{x\sqrt{y}}\) e)\(\frac{3\sqrt{2}-1}{3-\sqrt{8}}\) f)\(\frac{3-3\sqrt{2}}{2\sqrt{2}-3\sqrt{6}}\) g \(\frac{xy}{\sqrt{x}-\sqrt{y}}\)
Rút gọn biểu thức sau
a/ A=\(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\frac{x-y}{\sqrt{x}-\sqrt{y}}\)Với x>0 ; y>0 ;x#y
b/ B=\(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
c/ C=\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
d/ D=\(\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{6-3\sqrt{3}}\)
1. Tính:
a) A= \(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)(dấu căn đầu tiên là của cả biểu thức)
b) B= \(\frac{2}{\sqrt{3}}+\frac{\sqrt{2}}{3}+\frac{2}{\sqrt{3}}.\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
2. Cho:
A= \(\left(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right):\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)với x>0, y>0
a) Rút gọn A
b) Cho xy=16. Tìm x,y để A có GTNN. Tìm Gt đó
Bạn chỉ mình cách viết phân số đi, mình làm ra luôn cho.
vào chữ fx rồi chọn biểu tượng phân số là xong
Rút gọn biểu thức
a)\(\sqrt{3}-\sqrt{2}-\sqrt{\sqrt{3}+\sqrt{2}}\)
b)\(\sqrt{11-4\sqrt{7}}-\sqrt{2}\cdot\sqrt{8+3\sqrt{7}}\)
c)\(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
d)\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{x-\sqrt{x}}\left(x>0;x\ne1\right)\)
e)\(\frac{4-4\sqrt{x}}{x-2\sqrt{x}-35}+\frac{2}{\sqrt{x}-7}-\frac{3}{\sqrt{x}+5}\left(x\ge0:x\ne49\right)\)
f)\(\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}\)
f)\(\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}.\left(\sqrt{x}-\sqrt{y}\right)\)
\(=x-y\)
b)\(\sqrt{11-4\sqrt{7}}-\sqrt{2}.\sqrt{8+3\sqrt{7}}\)
\(=\sqrt{7-4\sqrt{7}+4}-\sqrt{16+6\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-2\right)^2}-\sqrt{9+6\sqrt{7}+7}\)
\(=\sqrt{7}-2-\sqrt{\left(3+\sqrt{7}\right)^2}\)(vì \(\sqrt{7}>2\))
\(=\sqrt{7}-2-3-\sqrt{7}=-5\)
c)\(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}}{\sqrt{y}}=\frac{\sqrt{xy}}{y}\)
d)\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{x-\sqrt{x}}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}=\frac{x-\sqrt{x}}{x}\)
Trục căn thức ở mẫu:
A) \(\frac{1}{\sqrt{X-1}}\)
B) \(\frac{X+2}{\sqrt{X^2-4}}\)
C) \(\frac{A}{\sqrt{X^N}}\:\)( N lẻ)
D) \(\frac{2-\sqrt{3}}{\sqrt{2-\sqrt{3}}}\)
E) \(\frac{2}{\sqrt{7-2\sqrt{6}}}\)