Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Tam
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 11 2023 lúc 17:50

a: Vì A là tập hợp của các số không âm nên để \(\left(x+y\right)_{max}\) và \(x,y\in A\)

thì x,y là hai số lớn nhất trong A

=>x=34 và y=23

b: Vì B là tập hợp của các số không âm nên để \(\left(x+y\right)_{min}\) và \(x,y\in A\)

thì x,y là hai số nhỏ nhất trong A

=>x=0 và y=14

Bảo Thy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2021 lúc 21:55

a: x+y=21+34=55

Vũ Lê Bảo Thy
Xem chi tiết
Nguyen Minh Thanh
Xem chi tiết
phạm hồng quân
Xem chi tiết
Nguyễn Duy Hưng
Xem chi tiết
Lê Song Phương
15 tháng 6 2023 lúc 11:39

Đặt \(gcd\left(a,b\right)=d\) và \(lcm\left(a,b\right)=m\) \(\left(d,m\inℕ^∗\right)\). Điều kiện đã cho tương đương \(d+m+a+b=ab\) \(\Leftrightarrow\dfrac{d}{ab}+\dfrac{m}{ab}+\dfrac{1}{a}+\dfrac{1}{b}=1\)   (1)

 Ta lại có \(dm=ab\) (mình sẽ chứng minh cái này sau) nên từ (1) ta có \(\dfrac{1}{m}+\dfrac{1}{d}+\dfrac{1}{a}+\dfrac{1}{b}=1\)     (2).

Do \(d\le b\le a\le m\) nên \(\dfrac{1}{m}\le\dfrac{1}{a}\le\dfrac{1}{b}\le\dfrac{1}{d}\). Kết hợp với (2), ta được \(1=\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{d}\le\dfrac{4}{d}\) \(\Leftrightarrow d\le4\) hay \(d\in\left\{1,2,3,4\right\}\).

 Nếu \(d=1\) thì ta có \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=0\), vô lí.

 Nếu \(d=2\) thì ta có \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2}\), khi đó \(\dfrac{1}{2}=\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}\le\dfrac{3}{b}\) nên \(b\le6\) hay \(b\in\left\{1,2,3,4,5;6\right\}\). Dĩ nhiên \(b\) không thể là số lẻ do \(d=2\) là ước của b. Vậy thì \(b\in\left\{2,4,6\right\}\). Nếu \(b=2\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=0\), vô lí. Nếu \(b=4\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{4}\le\dfrac{2}{a}\Leftrightarrow a\le8\) hay \(a\in\left\{1,2,3,4,5,6,7,8\right\}\). Do a cũng là số chẵn nên \(a\in\left\{2,4,6,8\right\}\), mà \(a\ge b\) nên suy ra \(b\in\left\{4,6,8\right\}\). Có \(b=4\) và \(b=6\) thỏa mãn. Nếu \(b=8\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{3}{8}\le\dfrac{2}{a}\Leftrightarrow a\le\dfrac{16}{3}\Leftrightarrow a\le5\), mà \(a\ge b\) nên vô lí

 Nếu \(d=3\) thì \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}\le\dfrac{3}{b}\) \(\Leftrightarrow b\le\dfrac{9}{2}\Leftrightarrow b\le4\) hay \(b\in\left\{1,2,3,4\right\}\). Mà \(b⋮3\) nên \(b=3\). Khi đó \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{3}\le\dfrac{2}{a}\Leftrightarrow a\le6\) Nhưng vì \(a⋮3\) nên \(a\in\left\{3,6\right\}\). Nếu \(a=3\) thì thử lại không thỏa mãn. Nếu \(a=6\) thì thỏa mãn.

 Nếu \(d=4\) thì \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{4}\le\dfrac{3}{b}\) hay \(b\le4\). Mà \(b⋮4\) nên \(b=4\), từ đó suy ra \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{2}\le\dfrac{2}{a}\Leftrightarrow a\le4\), vì \(a⋮4\)  nên \(a=4\).

 Vậy ta tìm được các cặp số (4;4); (4;6); (6;3) thỏa ycbt.

 (*) Như mình đã hứa, mình sẽ chứng minh \(gcd\left(a,b\right).lcm\left(a,b\right)=ab\):

 Ta biết rằng 1 số tự nhiên N khác 0 bất kì có thể viết được dưới dạng \(N=p_1^{a_1}.p_2^{a_2}...p_n^{a_n}\) với \(p_i\left(i=\overline{1,n}\right)\) là các số nguyên tố đôi một phân biệt còn \(a_i\left(i=\overline{1,n}\right)\) là các số tự nhiên. 

 Trở lại bài toán, ta đặt \(a=p_1^{m_1}.p_2^{m_2}...p_k^{m_k}\) và \(b=p_1^{n_1}.p_2^{n_2}...p_k^{n_k}\). Khi đó, rõ ràng \(gcd\left(a,b\right)=p_1^{min\left\{m_1,n_1\right\}}.p_2^{min\left\{m_2,n_2\right\}}...p_k^{min\left\{m_k,n_k\right\}}\) và \(lcm\left(a,b\right)=p_1^{max\left\{m_1,n_1\right\}}.p_2^{max\left\{m_2,n_2\right\}}...p_k^{max\left\{m_k,n_k\right\}}\). Do đó \(gcd\left(a,b\right).lcm\left(a,b\right)=\prod\limits^k_{i=1}p_i^{min\left\{m_i,n_i\right\}+max\left\{m_i,n_i\right\}}=\prod\limits^k_{i=1}p_i^{m_i+n_i}=ab\) (kí hiệu \(\prod\limits^k_{i=1}A_i=A_1A_2...A_k\)

, ta có đpcm

Nguyễn Duy Hưng
15 tháng 6 2023 lúc 8:29

giúp mik 

 

AKIRA
15 tháng 6 2023 lúc 8:40

giúp mình trả lời câu hỏi đi

 

 

Lê thị minh giang
Xem chi tiết
Nguyễn Anh Quân
22 tháng 2 2018 lúc 20:09

a, x = -6

b, y = 8

❊ Linh ♁ Cute ღ
22 tháng 2 2018 lúc 20:11

a, x=-6

b, y=8

nha bn!!

Dương Lam Hàng
22 tháng 2 2018 lúc 20:11

a) Vì \(\left|x+6\right|\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow A=-26+\left|x+6\right|\ge-26\)

Dấu "=" xảy ra <=> x + 6 = 0 => x = -6

Vậy Amin = -26 <=> x = -6

b) Vì \(B=\left|y-8\right|\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow B=10-\left|y-8\right|\le10\)

Dấu "=" xảy ra <=> y - 8 = 0 => y = 8

Vậy Bmax = 10 <=> y = 8

Phương Anh Nguyễn Hoàng
Xem chi tiết
Đinh Thị Phương Anh
Xem chi tiết
Phạm Hồng Thảo Nhi
18 tháng 8 2021 lúc 21:48

ban hoc lop may vay

Khách vãng lai đã xóa