Tìm a,b thuộc N* sao cho a^7 = b^8 đạt GT lớn nhất, nhỏ nhất ( a khác b )
Cho A= {14;21; 23;34;19;0}. Tìm x, y , thuộc A , x và y khác nhau sao cho :
a. Tổng x+y đạt giá trị lớn nhất. b. Tổng x+y đạt giá trị nhỏ nhất.
a: Vì A là tập hợp của các số không âm nên để \(\left(x+y\right)_{max}\) và \(x,y\in A\)
thì x,y là hai số lớn nhất trong A
=>x=34 và y=23
b: Vì B là tập hợp của các số không âm nên để \(\left(x+y\right)_{min}\) và \(x,y\in A\)
thì x,y là hai số nhỏ nhất trong A
=>x=0 và y=14
câu 11: cho a = {-14;21;-23;34;19;0} . tìm x, y thuộc a, x và y khác nhau sao cho: a) tổng x + y đạt giá trị lớn nhất b) tổng x + y đạt giá trị nhỏ nhất
câu 11: cho a = {-14;21;-23;34;19;0} . tìm x, y thuộc a, x và y khác nhau sao cho: a) tổng x + y đạt giá trị lớn nhất b) tổng x + y đạt giá trị nhỏ nhất
8. Biết BCNN(a,b) = 385 và BCNN(a, c) = 84. Tìm a,b,c.
9. Cho dãy số tự nhiên 1; 2; 3;..; 100. Tìm hai số khác nhau thuộc dãy số trên, sao cho:
a) BCNN của chúng đạt giá trị lớn nhất
b) ƯCLN của chúng đạt giá trị lớn nhấ
Tìm a,b thuộc N nhỏ nhất với a,b >1 và a^7 =b^8
tìm a,b thuộc N* ,a >=b sao cho bội chung nhỏ nhất của a,b + ước chúng lớn nhất của a,b +a+b=ab
Đặt \(gcd\left(a,b\right)=d\) và \(lcm\left(a,b\right)=m\) \(\left(d,m\inℕ^∗\right)\). Điều kiện đã cho tương đương \(d+m+a+b=ab\) \(\Leftrightarrow\dfrac{d}{ab}+\dfrac{m}{ab}+\dfrac{1}{a}+\dfrac{1}{b}=1\) (1)
Ta lại có \(dm=ab\) (mình sẽ chứng minh cái này sau) nên từ (1) ta có \(\dfrac{1}{m}+\dfrac{1}{d}+\dfrac{1}{a}+\dfrac{1}{b}=1\) (2).
Do \(d\le b\le a\le m\) nên \(\dfrac{1}{m}\le\dfrac{1}{a}\le\dfrac{1}{b}\le\dfrac{1}{d}\). Kết hợp với (2), ta được \(1=\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{d}\le\dfrac{4}{d}\) \(\Leftrightarrow d\le4\) hay \(d\in\left\{1,2,3,4\right\}\).
Nếu \(d=1\) thì ta có \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=0\), vô lí.
Nếu \(d=2\) thì ta có \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2}\), khi đó \(\dfrac{1}{2}=\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}\le\dfrac{3}{b}\) nên \(b\le6\) hay \(b\in\left\{1,2,3,4,5;6\right\}\). Dĩ nhiên \(b\) không thể là số lẻ do \(d=2\) là ước của b. Vậy thì \(b\in\left\{2,4,6\right\}\). Nếu \(b=2\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=0\), vô lí. Nếu \(b=4\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{4}\le\dfrac{2}{a}\Leftrightarrow a\le8\) hay \(a\in\left\{1,2,3,4,5,6,7,8\right\}\). Do a cũng là số chẵn nên \(a\in\left\{2,4,6,8\right\}\), mà \(a\ge b\) nên suy ra \(b\in\left\{4,6,8\right\}\). Có \(b=4\) và \(b=6\) thỏa mãn. Nếu \(b=8\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{3}{8}\le\dfrac{2}{a}\Leftrightarrow a\le\dfrac{16}{3}\Leftrightarrow a\le5\), mà \(a\ge b\) nên vô lí
Nếu \(d=3\) thì \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}\le\dfrac{3}{b}\) \(\Leftrightarrow b\le\dfrac{9}{2}\Leftrightarrow b\le4\) hay \(b\in\left\{1,2,3,4\right\}\). Mà \(b⋮3\) nên \(b=3\). Khi đó \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{3}\le\dfrac{2}{a}\Leftrightarrow a\le6\) Nhưng vì \(a⋮3\) nên \(a\in\left\{3,6\right\}\). Nếu \(a=3\) thì thử lại không thỏa mãn. Nếu \(a=6\) thì thỏa mãn.
Nếu \(d=4\) thì \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{4}\le\dfrac{3}{b}\) hay \(b\le4\). Mà \(b⋮4\) nên \(b=4\), từ đó suy ra \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{2}\le\dfrac{2}{a}\Leftrightarrow a\le4\), vì \(a⋮4\) nên \(a=4\).
Vậy ta tìm được các cặp số (4;4); (4;6); (6;3) thỏa ycbt.
(*) Như mình đã hứa, mình sẽ chứng minh \(gcd\left(a,b\right).lcm\left(a,b\right)=ab\):
Ta biết rằng 1 số tự nhiên N khác 0 bất kì có thể viết được dưới dạng \(N=p_1^{a_1}.p_2^{a_2}...p_n^{a_n}\) với \(p_i\left(i=\overline{1,n}\right)\) là các số nguyên tố đôi một phân biệt còn \(a_i\left(i=\overline{1,n}\right)\) là các số tự nhiên.
Trở lại bài toán, ta đặt \(a=p_1^{m_1}.p_2^{m_2}...p_k^{m_k}\) và \(b=p_1^{n_1}.p_2^{n_2}...p_k^{n_k}\). Khi đó, rõ ràng \(gcd\left(a,b\right)=p_1^{min\left\{m_1,n_1\right\}}.p_2^{min\left\{m_2,n_2\right\}}...p_k^{min\left\{m_k,n_k\right\}}\) và \(lcm\left(a,b\right)=p_1^{max\left\{m_1,n_1\right\}}.p_2^{max\left\{m_2,n_2\right\}}...p_k^{max\left\{m_k,n_k\right\}}\). Do đó \(gcd\left(a,b\right).lcm\left(a,b\right)=\prod\limits^k_{i=1}p_i^{min\left\{m_i,n_i\right\}+max\left\{m_i,n_i\right\}}=\prod\limits^k_{i=1}p_i^{m_i+n_i}=ab\) (kí hiệu \(\prod\limits^k_{i=1}A_i=A_1A_2...A_k\))
, ta có đpcm
Tìm X,Y thuộc z
a, A=-26+/x+6/ đạt giá trị nhỏ nhất
b, B=10-/y-8/ đạt giá trị lớn nhất
a) Vì \(\left|x+6\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow A=-26+\left|x+6\right|\ge-26\)
Dấu "=" xảy ra <=> x + 6 = 0 => x = -6
Vậy Amin = -26 <=> x = -6
b) Vì \(B=\left|y-8\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow B=10-\left|y-8\right|\le10\)
Dấu "=" xảy ra <=> y - 8 = 0 => y = 8
Vậy Bmax = 10 <=> y = 8
Cho A={-14;21;-23;34;19;0}.Tìm x,y thuộc A,x và y khác nhau sao cho
a) Tổng x+y đật giá trị lớn nhất
b) Tổng x+y đạt giá trị nhỏ nhất
Giúp mình với mình sẽ cho think nhưng trả lời đầy đủ nha đừng có trả lời mỗi đáp thôi.Thanks mọi người ạ !!!!!!!
ban hoc lop may vay