Tìm các góc của một tam giác, biết rằng số đo các góc tỉ lệ với 2,3,4.
Tính các góc của 1 tam giác biết rằng số đo các góc tỉ lệ với 2,3,4.
Goi 3 acnh lan luot la a;b;c
số đo các cạnh tỉ lệ với 2,3,4.
Vì tổng 3 góc của 1 tam giác =180
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{180}{9}=20\)
=> a= 20.2=40
b= 20.3=60
c= 20.4=80
Tìm các góc của 1 hình tam giác. Biết số đo của chúng tỉ lệ với 2,3,4
Gọi ba góc của tam giác là a;b ;c
theo bài ra ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}vàa+b+c=180\)( Vì tổng ba góc bằng 180 độ)
Theo Dãy tỉ số bằng nhau ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{180}{9}=20\)
=> a = 2.20 = 40 dộ
=> b = 20 . 3 = 60 độ
=> c = 20 . 4 = 80 độ
gọi các góc đó là a,b,c. ta có: a+b+c=180o
theo dãy tỉ lệ thức ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{180^0}{9}=20^0\)
=> \(\frac{a}{2}=20^0\Rightarrow a=20^0.2=40^0\)
=> \(\frac{b}{3}=20^0\Rightarrow b=20^0.3=60^0\)
=> \(\frac{c}{4}=20^0\Rightarrow c=20^0.4=80^0\)
vậy 3 góc đó có số đo lần lượt là: 400; 600; 800
Tính số đo các góc của tam giác ABC biết số 3 góc A,B,C tỉ lệ với 2,3,4
Cho tam giác ABC , biết rằng số đo góc tỉ lệ với 2,3,4 . Số đo góc A là ?
Gọi số góc `A,B,C` lần lượt là `a,b,c`
Theo đề ra ta có : `a/2=b/3=c/4` và `a+b+c=180`
ADTC dãy tỉ số bằng nhau ta có :
`a/2=b/3=c/4 =(a+b+c)/(2+3+4)=180/9= 20`
`=> a/2=20=>a=20.2=40`
Vậy số đo góc A là `40`
tìm góc của một tam giác biết rằng số đo các góc đó tỉ lệ với 2;3;4
Gọi số do các góc là : x,y,z
Ta có : x : y : z = 2 : 3 : 4
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Vì : x,y,z là các góc trong 1 tam giác nên : x + y + z = 180
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{180}{9}=20\)
Nên : \(\frac{x}{2}=20\Rightarrow x=40\)
\(\frac{y}{3}=20\Rightarrow y=60\)
\(\frac{z}{4}=20\Rightarrow z=80\)
Vậy .....................
Gọi 3 góc của tam giác đó là a,b,c
Theo bài ra ta có :
\(a:2\)
\(b:3\)
và \(c:4\)
Và tổng ba góc của tam giác là 180
\(\Rightarrow a+b+c=180^o\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{2}+\frac{b}{3}+\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{180^o}{9}=20^o\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=20^o\\\frac{b}{3}=20^o\\\frac{c}{4}=20^o\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=40^o\\b=60^o\\c=80^o\end{cases}}\)
Vậy .......
Bài 1: Tìm số đo các góc của một tam giác , biết rằng các góc của nó tỉ lệ với 1: 2 : 3
Gọi các góc của tam giác đó là: A; B; C (A;B;C khác 0)
Ta có: A/1=B/2=C/3 và A + B+ C=180* (tổng 3 góc trong tam giác)
Áp dụng tc dãy tso = nhau, ta có:
A/1=B/2=C/3=A+B+C/1+2+3=180/6=30
=> A/1 = 30*(30x1)(dpcm)
=> B/2 = 60* (30x2)(dpcm)
=> C/3= 90* (30x3)(dpcm)
Gọi số đó các góc lần lượt là a,b,c ( cm )
Điều kiện : a,b,c > 0
Vì các góc tỉ lệ lần lượt với 1 ; 2 ; 3 nên \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)( 1 )
Xét \(\Delta\)có tổng số đo các góc là 180o ( định lí ) ( 2 )
Từ ( 1 ) và ( 2 ) ta áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{180^o}{6}=30^o\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{1}=30^o\\\frac{b}{2}=30^o\\\frac{c}{3}=30^o\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=30^o\\b=60^o\\c=90^o\end{cases}}\)
Tam giác ABC có số đo các góc A, B, C tỉ lệ với 3; 5; 7. Tính số đo các góc của tam giác ABC, biết rằng tổng số đo ba góc trong một tam giác bằng 1800 .
Giúp mình với
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)
1So sánh các cạnh của ∆ABC biết rằng: Số đo cácA,B,C lần lượt tỉ lệ với 2,3,4 .
2. So sánh các cạnh của ∆ABC biết rằng: A=110 độ và số đo góc B, C lỉ lệ với 1/3 và 1/4.
3.So sánh các cạnh của ∆ABC biết rằng: A=40 độ và số đo góc B, C tỉ lệ với 3,4.
4.Cho ∆ABCcó AB=5cm,BC=7cm,AC=10cm . So sánh các góc của ∆ABC ?
1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{180}{9}=20\)
Do đó: a=40; b=60; c=80
Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\)
nen BC<AC<AB
2: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{4}}=\dfrac{b+c}{\dfrac{1}{3}+\dfrac{1}{4}}=\dfrac{70}{\dfrac{7}{12}}=120\)
Do đó: b=40; c=30
Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)
nên BC>AC>AB
Tìm số đo các góc của một tam giác biết số đo các góc đó tỉ lệ với 4,3,2.
Đơn giản
Gọi độ dài mỗi cạnh lần lượt: x,y,z \(\left(x,y,z\ne0\right)\)
Theo đề bài ta có: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\)và x + y + z = \(180^o\)( x,y, z là mỗi cạnh của tam giác đó)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}=\frac{x+y+z}{4+3+2}=\frac{180^o}{9}=20^o\)
Do đó: \(\frac{x}{4}=20^o\Rightarrow x=80^o\)
\(\frac{y}{3}=20^o\Rightarrow y=60^o\)
\(\frac{z}{2}=20^o\Rightarrow z=40^o\)
Zậy chỉ cần kết luận thui