Tìm a ,b biết: \(2a^2+2b^2-8a-8b+2ab+10=0\)
Tìm a,b nguyên biết: \(2a^2+2b^2+2ab-8a-8b+10=0\)
Ta có : \(2a^2+2b^2+2ab-8a-8b+10=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(a^2-8a+16\right)+\left(b^2-8b+16\right)=22\)
\(\Leftrightarrow\left(a+b\right)^2+\left(a-4\right)^2+\left(b-4\right)^2=22\). Dễ thấy \(\left(a+b\right)^2\le22\Rightarrow a+b< \sqrt{22}< \sqrt{16}=4\)
Phân tích : \(22=3^2+3^2+2^2\).
Từ đó chia ra các trường hợp , ta chọn được (a;b) = (1;1) ; (1;2) ; (2;1)
Tìm a,b,c biết
a) \(a^2+25b^2+17+10b-8a=0\)
b) \(a^2+b^2-ab-2a-2b+4=0\)
c) \(a^2+2b^2+2ab-2a+2=0\)
d) \(5a^2+3b^2+c^2-4a+6ab+4c+6=0\)
a) \(a^2+25b^2+17+10b-8a=0\)
\(\Rightarrow a^2-8a+16+25b^2+10b+1=0\)
\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2=0\)
Vì \(\left(a-4\right)^2\ge0\) với mọi a
\(\left(5b+1\right)^2\ge0\) với mọi b
\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2\ge0\) với mọi a,b
Mà \(\left(a-4\right)^2+\left(5b+1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)^2=0\\\left(5b+1\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-4=0\\5b+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\5b=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-\dfrac{1}{5}\end{matrix}\right.\)
Tìm B nhỏ nhất
\(B=2a^2+2b^2+2ab-10a-8b+19\)
\(B=2a^2+2b^2+2ab-10a-8b+19\)
\(B=\left(a^2+2ab+b^2\right)+\left(a^2-10a+25\right)+\left(b^2-8b+16\right)-22\)
\(B=\left(a+b\right)^2+\left(a-5\right)^2+\left(b-4\right)^2-22\ge22\)
Vậy MIN B=22 <=> a=5 b=4
Tìm a; b; c biết:
a)\(a^2+2b^2-2ab+2a-4b+2=0\)
b)\(a^2+5b^2-4ab+2a-6b+2=0\)
a, \(\left(a^2+b^2-2ab+2a-2b+1\right)+\left(b^2-2b+1\right)=0\)
=> \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)
Mà \(\left(a-b+1\right)^2\ge0,\left(b-1\right)^2\ge0\)
=> \(\hept{\begin{cases}a-b+1=0\\b=1\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}}\)
b,Tương tự
\(\left(a-2b+1\right)^2+\left(b-1\right)^2=0\)
=>\(\hept{\begin{cases}a=1\\b=1\end{cases}}\)
\(P=\frac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}+\frac{b}{\sqrt{\left(c+1\right)\left(c^2-c+1\right)}}+\frac{c}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\)
\(\ge\frac{2a}{b^2+2}+\frac{2b}{c^2+2}+\frac{2c}{a^2+2}=\left(a+b+c\right)-\left(\frac{ab^2}{b^2+2}+\frac{bc^2}{c^2+2}+\frac{ca^2}{a^2+2}\right)\)
\(=6-\left(\frac{2ab^2}{b^2+4+b^2}+\frac{2bc^2}{c^2+4+c^2}+\frac{2ca^2}{a^2+4+a^2}\right)\ge6-\left(\frac{2ab}{b+4}+\frac{2bc}{c+4}+\frac{2ca}{a+4}\right)\)
\(=6-\left(2a+2b+2c-\frac{8a}{b+4}-\frac{8b}{c+4}-\frac{8c}{a+4}\right)\)
\(=\frac{8a}{b+4}+\frac{8b}{c+4}+\frac{8c}{a+4}-6=\frac{8a^2}{ab+4a}+\frac{8b^2}{bc+4b}+\frac{8c^2}{ca+4c}-6\)
\(\ge\frac{8\left(a+b+c\right)^2}{\left(ab+bc+ca\right)+4\left(a+b+c\right)}-6\ge\frac{288}{\frac{\left(a+b+c\right)^2}{3}+24}-6=2\)
Cho `a, b > 0` thoả mãn `a ≥ 2b`
Tìm GTNN của `P =` $\dfrac{2a^2 + b^2 - 2ab}{ab}$
\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)
\(P=2\left(\dfrac{a}{b}\right)+\left(\dfrac{b}{a}\right)-2=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{7}{4}\left(\dfrac{a}{b}\right)-2\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{7}{4}.2-2=\dfrac{5}{2}\)
\(P_{min}=\dfrac{5}{2}\) khi \(a=2b\)
tìm a, b để hệ phương trình sau có nghiệm
\(\hept{\begin{cases}\left(2a+b+1\right)x+\left(a-2b-2\right)y=5a\\\left(3a^2+4b^2+2\right)x+\left(2a^2-8b^2-4\right)y=8a^2\end{cases}}\)
cho biết a^2+b^2=2 tính M=(4a^4-8a^2) + (4b^4-8b^2) + 8a^2b^2
\(a^2+b^2=2\Rightarrow\hept{\begin{cases}a^2-2=-b^2\\b^2-2=-a^2\end{cases}}\)
\(M=\left(4a^4-8a^2\right)+\left(4b^4-8b^2\right)+8a^2b^2\)
\(=4a^2\left(a^2-2\right)+4b^2\left(b^2-2\right)+8a^2b^2\)
\(=4a^2\left(-b^2\right)+4b^2\left(-a^2\right)+8a^2b^2\)
\(=-8a^2b^2+8a^2b^2\)
\(=0\)
Huỳnh Chi ơi lúc nãy mình bấm nhầm đây mới là bài thơ
Bây giờ ai đã quên chưa
Mùa hoa phượng nở khi Hè vừa sang
Bâng khuâng dưới ánh nắng vàng
Tặng nhau cánh phượng ai mang đi rồi
thu gọn các đa thức sau:
a,2a^3.(-1/2ab).a^2b
b,-2/1/3a^3c^2.1/7ac^2.6abc
c,2ab.4/3a^2b^4.7abc
d,2y.3y^2.d^2y^2
e,(-2/1/3.cd).(1/1/4c^2d).(-5/6cd)^2
g,(1/2a.1/4a^2.1/8^3)^2.2b.4b^2-8b^3