Cho Tam giác ba góc nhọn abc, có 2 đường cao BD và ce.cm rằng góc ade và góc abc
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE. CMR góc ADE=góc ABC
Tam giác ADE và tg ABC có
\(\hept{\begin{cases}\widehat{A}chung\\\\\frac{AD}{AE}=\frac{AB}{AC}\left(\frac{AD}{AB}=\cos\widehat{A}=\frac{AE}{AC}\right)\end{cases}}\)
Suy ra ADE đồng dạng ABC
=> đpcm
Cho tam giác ABC có 3 góc nhọn .Các đường cao BD và CE . C/m góc ADE = góc ABC
Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{A}\) chung
Do đó: ΔADB\(\sim\)ΔAEC
Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
\(\widehat{A}\) chung
Do đó: ΔADE\(\sim\)ΔABC
Suy ra: \(\widehat{ADE}=\widehat{ABC}\)
Cho tam giác ABC có ba góc nhọn, các đường cao BD,CE. Cm:góc ADE=góc ABC
giúp mk bài này
a) + ΔABD ∼ ΔACE ( g.g )
⇒ABAD=ACAE⇒ABAC=ADAE⇒ABAD=ACAE⇒ABAC=ADAE
b) + ΔBHE ∼ ΔCHD ( g.g )
⇒HBHE=HCHD⇒HBHE=HCHD
⇒HB⋅HD=HC⋅HE⇒HB⋅HD=HC⋅HE
c) + ΔADE ∼ ΔABC ( c.g.c )
⇒ADEˆ=ABCˆ
Tam giác ADE và tg ABC có
góc A chung
AD/AE=AB/AC ( AD/AB=cos góc A =AE/AC)
suy tam giác ADE đong dang zs tam giác ABC
Gọi M là trung điểm của BC
Lúc đó thì EM, DM lần lượt là trung tuyến ứng với cạnh huyền của hai tam giác vuông BEC, BDC
\(\Rightarrow MB=ME=MC=MD\)
Do đó tam giác BEM; CMD và EDM cân tại M
Ta có: \(\widehat{ADE}=180^0-\widehat{MDE}-\widehat{MDC}\)
\(=180^0-\frac{180^0-\widehat{EMD}}{2}-\frac{180^0-\widehat{DMC}}{2}\)
\(=\frac{\widehat{EMD}+\widehat{DMC}}{2}=\frac{180^0-\widehat{EMB}}{2}=\frac{2\widehat{MBE}}{2}=\widehat{ABC}\)
Vậy \(\widehat{ADE}=\widehat{ABC}\left(đpcm\right)\)
cho tam giác ABC có ba góc nhọn,hai đường cao BD và CE của tam giác cắt nhau tại H (D€AC,E€AB ).Chứng minh rằng:
a) chứng minh 🔺ABC đồng dạng với tam giác AEC
b) chứng minh góc ADE= góc ABC
c) kẻ HK vuông góc BC (K€BC) .chứng minh BH.BD+CH.CE=BC mũ2
vẽ hình dùm lun nha mụi ngừi cảm ơn rất nhìu
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
b: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
=>góc ADE=góc ABC
cho tam giác ABC có ba góc nhọn,hai đường cao BD và CE của tam giác cắt nhau tại H (D€AC,E€AB ).Chứng minh rằng:
a) chứng minh 🔺ABC đồng dạng với tam giác AEC
b) chứng minh góc ADE= góc ABC
c) kẻ HK vuông góc BC (K€BC) .chứng minh BH.BD+CH.CE=BC mũ2
vẽ hình dùm lun nha mụi ngừi cảm ơn rất nhìu
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
Cho tam giác ABC có ba góc nhọn, các đường cao BD và CE ( D ∈ AC, E ∈ AB )
a) Chứng minh ΔADB đồng dạng với ΔAEC
b) Gọi H là trực tâm của ΔABC, Chứng minh HE.HC=HD.HB
c) Chứng minh góc ADE bằng góc ABC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
b: Xet ΔHEB vuôg tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC
=>HE/HD=HB/HC
=>HE*HC=HB*HD
c: ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
Cho tam giác nhọn ABC có góc A bằng 60 độ, các đường cao BD và CE. Chứng minh rằng: SADE=1/4SABC
\(\Delta ACE\)vuông tại A có \(\widehat{A}=60^o\)nên \(\widehat{ACE}=30^o\)
\(\Rightarrow\frac{AE}{AC}=\frac{1}{2}\)
Tương tự : \(\frac{AD}{AB}=\frac{1}{2}\)
\(\Rightarrow\frac{AE}{AC}=\frac{AD}{AB}\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\)
chứng minh : \(\Delta ADE\approx\Delta ABC\)( c.g.c )
\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\frac{1}{4}\)
\(\Rightarrow S_{ADE}=\frac{1}{4}S_{ABC}\)
Cho tam giác ABC nhọn, các đường cao BD và CE. Chứng minh góc ABC = góc ADE cắt đường cao BD và CE Bạn nào giải nhanh giúp mk với nha, mk đang gấp
Cho tam giác abc có ba góc nhọn hai đường cao BD và CE của tam giác cắt nhau tại H. Chứng minh rằng:
1. góc AED= góc ACB
2.BH*BD+CH*CE=BC^2
a) Chứng minh tam giác AED đông dang tam giác ACB
b) Kẻ HI vuông góc BC
Có BHxBD+CHxCE=BC^2 bằng xét 2 cặp tam giác đông dạng.