cho S = 1 + 31 + 32 + ... +32015 c/m 2S +1 là số chính phương
A=3+32+33+...+32015
a) CMR: A chia hết cho 121
b)tìm n biết 2A+3=27n
c) A có phải số chính phương ko??
giúp mình nha! ai làm đúng tui tick cho
A = 3 + 32 + 33 +...+ 32015
A = (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)
A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )
A = 3.211 +...+ 32011.121
A = 121.( 3 +...+ 32021)
121 ⋮ 121 ⇒ A = 121 .( 3 +...+32021) ⋮ 121 (đpcm)
b, A = 3 + 32 + 33 + 34 +...+ 32015
3A = 32 + 33 + 34 +...+ 32015 + 32016
3A - A = 32016 - 3
2A = 32016 - 3
2A + 3 = 32016 - 3 + 3
2A + 3 = 32016 = 27n
27n = 32016
(33)n = 32016
33n = 32016
3n = 2016
n = 2016 : 3
n = 672
c, A = 3 + 32 + ...+ 32015
A = 3.( 1 + 3 +...+ 32014)
3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3
Mặt khác ta có: A = 3 + 32 +...+ 32015
A = 3 + (32 +...+ 32015)
A = 3 + 32.( 1 +...+ 32015)
A = 3 + 9.(1 +...+ 32015)
9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9
3 không chia hết cho 9 nên
A không chia hết cho 9, mà A lại chia hết cho 3
Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9
Cho S=4+3^2+3^3+....+3^999, chứng tỏ 2S+1 là số chính phương
a, Cho P=\(30\left(31^9+31^8+31^7+...+31^2+32\right)+1\).Chứng mình rằng P là số chính phương?
b, Chứng minh rằng nếu m là số nguyên lẻ thì:
\(\left(m^3+3m^2-m-3\right)\)chia hết cho 48
b) A=m3+3m2-m-3
=(m-1)(m2+m+1) +m(m-1) +2(m-1)(m+1)
=(m-1)(m2+m+1+m+2m+2)
=(m-1)(m2+4m+4-1)
=(m-1)[ (m+2)2-1 ]
=(m-1)(m+1)(m+3)
với m là số nguyên lẻ
=> m-1 là số chẵn(nếu gọi m là 2k-1 thì 2k-1-1=2k-2=2(k-1)(chẵn)
m+1 là số chẵn (tương tự 2k11+1=2k(chẵn)
m+3 là số chẵn (tương tự 2k-1+3=2k++2=2(k+2)(chẵn)
ta có:gọi m là 2k-1 thay vào A ta có:(với k là số nguyên bất kì)
A=(2k-2)2k(2k+2)
=(4k2-4)2k
=8k(k-1)(k+1)
k-1 ;'k và k+1 là 3 số nguyên liên tiếp
=> (k-1)k(k+1) sẽ chia hết cho 6 vì trong 3 số liên tiếp luôn có ít nhất 1 số chia hết cho 2 , 1 số chia hết cho 3
=> tích (k-1)k(k+1) luôn chia hết cho 6
=> A=8.(k-1)(k(k+1) luôn chia hết cho (8.6)=48
=> (m3+3m3-m-3) chia hết cho 48(đfcm)
ở lớp 8 ta có chứng minh rằng 3 số tự nhiên liên tiếp luôn chia hết cho 6 rồi đó ở trong sbt toán 8
Bài 1: Cho S= 3+3^2+3^3+....+3^100. Chứng minh rằng: (2S+3) không là số chính phương.
choA=31+32+33+...32015.Tìm n biết 2A+3=3n
\(A=3+3^2+3^3+...+3^{2015}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2015}+3^{2016}\)
\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{2016}\right)-\left(3+3^2+3^3+...+3^{2015}\right)\)
\(\Rightarrow2A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2016}-3\right)\)
\(\Rightarrow2A=3^{2016}-3\)
\(\Rightarrow A=\dfrac{3^{2016}-3}{2}\)
Ta có: \(2A+3=3^n\)
\(\Rightarrow2\cdot\dfrac{3^{2016}-3}{2}+3=3^n\)
\(\Rightarrow3^{2016}-3+3=3^n\)
\(\Rightarrow3^{2016}=3^n\)
\(\Rightarrow n=2016\)
1, 1-3+32-33+34- ... -32015
2, Tìm các số nguyên a1; a2; a3; ... ; an biết:
|a1 + a2| + |a2 + a3| + |a3 + a4| + ... + |an-1 + an| + |an + a1| = 2015
\(S=1+3^1+3^2+....+3^{2019}\)
a)Biểu thức 2S+1 có phải là số chính phương không
b)Tìm số dư khi chia cho 13
\(S=1+3+3^2+3^3+...+3^{2019}\)
\(\Leftrightarrow3S=3+3^2+3^3+3^4+...+3^{2020}\)
\(\Leftrightarrow2S=3^{2020}-1\)
\(\Leftrightarrow2S+1=3^{2020}-1+1\)
\(\Leftrightarrow2S+1=3^{2020}\)
\(\Leftrightarrow2S+1=\left(2^{1010}\right)^2\)
\(\text{Vậy 2S + 1 là số chính phương}\)
\(S=1+3+3^2+...+3^{2019}\)
\(\text{S có 2020 số hạng chia làm 673 nhóm mỗi nhóm 3 số , còn thừa một số }\)
\(\Leftrightarrow S=\left(1+3+3^2\right)+...+\left(3^{2016}+3^{2017}+3^{2018}\right)+3^{2019}\)
\(\Leftrightarrow S=13+...+3^{2016}\left(1+3+3^2\right)+3^{2019}\)
\(\Leftrightarrow S=13+...+3^{2016}.13+3^{2019}\)
\(\Leftrightarrow S=13\left(1+...+3^{2016}\right)+3^{2019}\)
Sau đó tìm số dư khi chia 32019 cho 13 là xong
Cho S=1+2+4+8+16+32+64+.............
Ở đây,S rõ ràng là số dương
S-1=2+4+8+16+32+64+...........
2S=2+4+8+16+32+64+.........
suy ra 2S=S-1
S=-1
Vậy lỗi sai nằm ở đâu ?
Gợi ý: hãy tìm hiểu khái niệm của chuỗi hội tụ
S là số vô hạn thì điều đó đúng. Còn S không phải là số vô hạn thì điều đó sai.
2s = 2+4 +.......128 +..... chứ k phai 64, bạn khôn quá he
nên 2s khác s-1 nghe bạn , k lừa dc tui đâu
Đề thiếu số hạng cuối cùng của biểu thức có thể coi lại bổ sung thêm
cách giải là S = 2S - ( S - 1) +1
(Số cuối của 2S) - (Số cuối của S - 1) +1
a)Tìm 2 số nguyên tố x;y thỏa mãn x2-y2=45
b)Cho S=1+3+32+34+...+330
Chứng tỏ S không phải là số chính phương
a) x2-y2=45 =>(x-y)(x+y)=45. Vì x,y là các số tự nhiên và x-y<x+y nên ta có thể viết:
(x-y)(x+y)=3.15 hay (x-y)(x+y)=5.9
=>x-y=3 và x+y=15 hay x-y=5 và x+y=9.
=>x=9 và y=6 (đều loại) hay x=7 và y=2 (đều thỏa mãn).
- Vậy x=7, y=2.
b) - Sửa lại đề: S=1+3+32+33+...+330.
=(1+3+32)+(32+33+34+35)+...+(327+328+329+330).
=13+32(1+3+32+33)+...+327(1+3+32+33)
=13+32.40+...+327.40
=13+40.(32+...+327) chia 5 dư 3.
- Mà các số chính phương chỉ có chữ số tận cùng là 0.1.4.5.6.9 nên số chính phương chia 5 dư 0;1;4.
- Vậy S không phải là số chính phương.