giá trị của biểu thức 16x mũ 2y mũ 5 - 2x mũ 3y mũ 2 tại x = 0,5 và y = -1 là
tính giá trị biểu thức sau
a, 21( x + 3) mũ 3 : ( 3x + 9 ) mũ 2 tại x = - 6
b, ( 2x mũ 2 - 5x + 3 ) mũ 4 : [( 2x - 3 ) mũ 3 . ( x - 1 ) mũ 2 ] tại x = 2; y = 3
c, 36x mũ 4 y mũ 3 : ( - 6 x mũ 3y mũ 2 ) tại x = 10 , y = 7
\(a)\)
\(21\left(x+3\right)^3:\left(3x+9\right)^2\)
\(=[21\left(x+3\right)^3]:[3^2\left(x+3\right)^2]\)
\(=7\left(x+3\right):3\)
Thay vào ta được: \(7.\frac{\left(-6+3\right)}{3}=7.\left(-3\right):3=-7\)
\(b)\)
Thay vào ta được:
\(\left(2.2^2-5.2+3\right)^4:[\left(2.2-3\right)^3:\left(2-1\right)^2]\)
\(=\left(2.4-10+3\right)^4:[\left(4-3\right)^31^2]\)
\(=1^4:\left(1^3.1\right)\)
\(=1:1\)
\(=1\)
\(c)\)
Thay vào ta được:
\(36.10^4.7^3:\left(-6.10^3.7^2\right)\)
\(=-6.10.7\)
\(=-420\)
1.Cho x-y=7.Tính giá trị của các biểu thức:
a,M=x mũ 3 - 3xy(x-y) - y mũ 3 - x mũ 2 + 2xy - y mũ 2
b,N=x mũ 2(x+1) - y mũ 2(y-1) + xy - 3xy(x-y+1) - 95
2.Cho x+y=5.Tính giá trị các biểu thức:
a,P=3x mũ 2 - 2x + 3y mũ 2 - 2y + 6xy - 100
b,Q=x mũ 3 + y mũ 3 - 2x mũ 2 - 2y mũ 2 + 3xy(x+y) - 4xy + 3(x+y) + 10
Các bn giúp mk vs đây là btvn của mk
B1 : a, M = x3-3xy(x-y)-y3-x2+2xy-y2
= ( x3-y3)-3xy(x-y) -(x2-2xy+y2)
= (x-y)(x2+xy+y2)-3xy(x-y)-(x-y)2
= (x-y) [(x2+xy+y2-3xy-(x-y)]
= (x-y)[(x2-2xy+y2)-(x-y)
= (x-y)[(x-y)2-(x-y)]
= (x-y)(x-y)(x-y-1)
= (x-y)2(x-y-1)
= 72(7-1) = 49 . 6= 294
N = x2(x+1)-y2(y-1)+xy-3xy(x-y+1)-95
= x3+x2-(y3-y2)+xy-(3x2y-3xy2+3xy)-95
= x3+x2-y3+y2+xy-3x2y+3xy2-3xy-95
= (x3-y3)+(x2-2xy+y2)-(3x2y+y2)-(3x2y-3xy2)-95
=(x-y)(x2+xy+y2)+(x-y)2-3xy(x-y)-95
= (x-y)(x2+xy+y2+x-y-3xy)-95
= (x-y)[(x2-2xy+y2)+(x-y)]-95
= (x-y)[(x-y)2+(x-y)]-95
=(x-y)(x-y)(x-y+1)-95
= (x-y)2(x-y+1)-95
= 72(7+1)-95=297
tính giá trị của biểu thức B= (x mũ 5 cộng y mũ 6-2) (2y-4) tại x =100 và y=2
Thay x=100 và y=2 vào biểu thức \(B=\left(x^5+y^6-2\right)\left(2y-4\right)\), ta được:
\(B=\left(100^2+2^6-2\right)\left(2\cdot2-4\right)=0\)
Vậy: Khi x=100 và y=2 thì B=0
Thay trực tiếp
\(\left(100^5+2^6-2\right)\left(2.2-4\right)\)
\(=\left(100^5+2^6-2\right).0\)
=0
tính giá trị của các biểu thức sau tại | x | = 1/2 , |y| = 1
a) A = 2x mũ 2 - 3x + 5
b) 2x mũ 2 - 3xy + y mũ 2
a: Trường hợp 1: x=1/2
\(A=2\cdot\dfrac{1}{4}-3\cdot\dfrac{1}{2}+5=\dfrac{1}{2}-\dfrac{3}{2}+5=3\)
Trường hợp 2: x=-1/2
\(A=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}+5=\dfrac{1}{2}+\dfrac{3}{2}+5=2+5=7\)
b: Trường hợp 1: x=1/2; y=1
\(B=2\cdot\left(\dfrac{1}{2}\right)^2-3\cdot\dfrac{1}{2}\cdot1+1^2=\dfrac{1}{2}-\dfrac{3}{2}+1=-1+1=0\)
Trường hợp 2: x=1/2; y=-1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{1}{2}\cdot\left(-1\right)+1=3\)
Trường hợp 3: x=-1/2; y=1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}\cdot1+1=\dfrac{1}{2}+\dfrac{3}{2}+1=3\)
Trường hợp 4: x=-1/2; y=-1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}\cdot\left(-1\right)+1=\dfrac{1}{2}-\dfrac{3}{2}+1=0\)
Bài 5: Tính GT của các biểu thức
a) A= x mũ 3 + 15x mũ 2 + 75x + 125 với x=-10
b) B= x mũ 3 - 9x mũ 2 + 2x - 27 với x= 13
c) P= 3x mũ 2 - 2x + 3y mũ 2 -2y + xy -100 với x+y=5
d) Q= x mũ 3 + y mũ 3 - 2x mũ 2 - 2y mũ 2 + 3xy(x+y) -4xy +3(x+y)+10 với x+y=5
a) A=x^3 + 3x^2*5 + 3x*5^2 + 5^3
=(x+5)^3
Thay x = -10 vào biểu thức A ta được:
A = (-10+5)^3
=(-5)^3
=-75
Làm tương tự nhé
Bài 1: tìm các giá trị của x để các biểu thức sau nhận giá trị âm
a) x mũ 2+5x
b) 3(2x+3)(3x-5)
Bài 2: tìm các giá trị của y để các biểu thức sau nhận giá trị dương
a) 2y mũ 2 - 4y
b) 5(3y+1)(4y - 3)
Bài 1:
a) \(x^2+5x=x\left(x+5\right)< 0\) (1)
Nhận thấy: \(x< x+5\)
nên từ (1) \(\Rightarrow\) \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)
Vậy.....
b) \(3\left(2x+3\right)\left(3x-5\right)< 0\)
TH1: \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\) \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)
TH2: \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\) vô lí
Vậy \(-\frac{3}{2}< x< \frac{5}{3}\)
Bài 2:
a) \(2y^2-4y=2y\left(y-2\right)>0\)
TH1: \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)
TH2: \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)
Vậy \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)
b) \(5\left(3y+1\right)\left(4y-3\right)>0\)
TH1: \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)
TH2: \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)
Vậy \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)
bài 4; tính giá trị biểu thức
A = ( 5x mũ 5 + 5x mũ 4 ) : 5x mũ 2 - ( 2x mũ 4 - 8x mũ 2 -6 - 6x + 12 ) : ( 2x - 4 ) tại x = - 2
B = ( 3x mũ 4 - x mũ 2 - 2x ) : ( 3x mũ 2 + 3x + 2 ) + ( x mũ 4 - x mũ 2 ) : ( x mũ 2 - x ) tại x = - 5
tìm gía trị lớn nhất hoặc nhất của biểu thức
a, E= (x-1) mũ 2+|2y+2|-3
b, F= (x+5) mũ 2+ (2y-6)mũ 2+1
c,G= -(x+1)-|2-y|+11
d,H=-3-(2-x)mũ 2-(3-y) mũ 2
e, I= 5-|2x+6|-|2-y|
tính giá trị của đa thức M= 2x mũ 4 +3x mũ 2 y mũ 2 + y mũ 4+ y mũ 2 tại x mũ 2+y mũ 2=1