1. Tìm x,y # 0 biết
a) x*y=2 và x/y=8
b)x*(x+y)=9 và y*(x+y)=16
c)x+y=x*y=x/y
a, Cho `0<x<25`
Tìm GTLN:`(80-2x)(50-2x)x`
b, `0<x<2`. Tìm GTLN: `5x(2-x)`
c, `x≥2`. Tìm GTLN: `x + 1/x`
d, Cho `x,y>0, x+y≤1`. TÌm GTNN: `x + y + 1/x + 1/y`
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
c. Bạn kiểm tra lại đề nhé.
b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)
a.
\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)
Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)
b.
\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)
Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)
c.
Biểu thức này chỉ có min, ko có max
d.
\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
tìm x,y thuộc Z ,biêt: (2x-1).(2x+1)=-35
tìm c,y thuộc Z , biết: (x+1)^2 + (y+1)^2 + (x-y)^2 =2
tìm x,y thuộc Z, biết: (x^2-8).(x^2-15)<0
tìm x,y thuộc Z biết: x=6.y và|x|-|y|=60
tìm a,b thuộc Z biết: |a|+|b|<2
Cho x,y,z>0 và x+y+z=1 . Tìm MinP = ∑ \(\dfrac{1}{x+y+1}\)
Cho x,y,z>0 và x+y+z =1 . Tìm Min A = ∑ \(\dfrac{x}{y^2+x^2+1}\)
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
tìm x và y biết:
x ( y + 1 ) - ( y + 1 )
Từ đó tìm cặp số nguyên x, y thỏa mãn x ( y + 1 ) - y - 1 = 2
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
` Y = ( 3x^2 - 3x - 3 )/(x^2+x-2) - (x+1)/(x+2) + (x-2)/(x).( (1)/(1-x) - 1)`
a) Rút gọn Y ( Đáp số Y = ` (x-2)/(x+2) ` )
b) Tìm x để Y = 2
c) Tìm x ∈ Z để Y ∈ Z
a: \(Y=\dfrac{3\left(x^2-x-1\right)-x^2+1}{\left(x+2\right)\left(x-1\right)}+\dfrac{x-2}{x}\cdot\dfrac{1-1+x}{1-x}\)
\(=\dfrac{2x^2-3x-2}{\left(x+2\right)\left(x-1\right)}+\dfrac{x-2}{x}\cdot\dfrac{-x}{x-1}\)
\(=\dfrac{2x^2-3x-2}{\left(x+2\right)\left(x-1\right)}-\dfrac{x-2}{x-1}\)
\(=\dfrac{2x^2-3x-2-x^2+4}{\left(x+2\right)\left(x-1\right)}=\dfrac{x^2-3x+2}{\left(x+2\right)\left(x-1\right)}=\dfrac{x-2}{x+2}\)
b: Y=2
=>2x+4=x-2
=>x=-6(nhận)
c; Y nguyên
=>x+2-4 chia hết cho x+2
=>x+2 thuộc {1;-1;2;-2;4;-4}
Kết hợp ĐKXĐ, ta được: x thuộc {-1;-3;-4;-6}
1. cho x^2+y^2=1. tìm Min Max x+y
2. cho xy=1 x>y. tìm min (x^2+y^2)/(x-y)
toán lớp 7.x;y tỉ lệ thuận biết x=1;y=2 a)tìm k b) biểu diễn y theo x c) tìm y biết x=1;-2 tìm x biết y=3;-4 giải lớp7
a. \(k=\frac{y}{x}=2\)
b.
x | 1 | -2 |
y | 2 | -4 |
c.
y | 3 | -4 |
x | 3/2 | -2 |
Y+Z+1/X = X+Y+2/Y =X+Y-3=1/X+Y+Z
2. TÌM X BT
1+2Y/18 = 1+4Y/24 = 1+6Y/6X
1.tìm x,y biết
a, x.(y-3)≥0
b, (2.x-1).(y-1)≤0
c,(x-1).(2.k+1)≥0
2. tìm x,y ϵ Z biết
a, x(x+3)=0
b,(x-2).(5-x)=0
c,(x-1).(x^2+1)=0
d, x.y+3.x-7.y=21
e,x.y+3.x-2y=11
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1